Advertisement

Acta Mechanica

, Volume 227, Issue 1, pp 43–56 | Cite as

Chemical reactions in spherically symmetric problems of mechanochemistry

  • A. Freidin
  • N. Morozov
  • S. Petrenko
  • E. Vilchevskaya
Original Paper

Abstract

A stress-assisted chemical reaction front propagation in a linear elastic solid is considered. The reaction between gas and solid constituents is sustained by the diffusion of the gas through the transformed material. The consideration is based on the kinetic equation in a form of the dependence of the reaction front velocity on the normal component of the chemical affinity tensor that in turn depends on stresses and gas concentration. Spherically symmetric problems of mechanochemistry are solved for the reaction front propagation in a sphere, in a body with a spherical hole and in an inclusion placed into an infinite medium. It is demonstrated how stresses can enhance, retard and even lock the reaction. The effects of the sign and value of the reaction front curvature are also examined.

Keywords

Equilibrium Concentration Reaction Front Ceramic Matrix Composite Symmetric Problem Solid Constituent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeyaratne R., Knowles J.K.: Evolution of Phase Transitions. A Continuum Theory. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  2. 2.
    Buttner C.C., Zacharias M.: Retarded oxidation of Si nanowires. Appl. Phys. Lett. 89, 263106 (2006)CrossRefGoogle Scholar
  3. 3.
    De Donde T.: Thermodynamic Theory of Affinity: A Book of Principles. Oxford University Press, Oxford (1936)Google Scholar
  4. 4.
    El-Kareh B.: Fundamentals of Semiconductor Processing Technologies. Kluwer, Dordrecht (1995)CrossRefGoogle Scholar
  5. 5.
    Eshelby J.: The elastic energy-momentum tensor. J. Elast. 5, 321–335 (1975)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Freidin, A.B.: Crazes and shear bands in glassy polymer as layers of a new phase. Mech. Compos. Mater. 25, 1–7 (1989)Google Scholar
  7. 7.
    Freidin A.B.: On new phase inclusions in elastic solids. ZAMM 87, 102–116 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Freidin, A.B.: On chemical reaction fronts in nonlinear elastic solids, in: Indeitsev, D.A., Krivtsov, A.M. (eds.) Proceedings of XXXVII International Summer School-Conference Advance Problems in Mechanics (APM 2009), Institute for Problems in Mechanical Engineering, St. Petersburg, pp. 231–237 (2009)Google Scholar
  9. 9.
    Freidin A.B.: Mechanics of Fracture. Eshelby Problem. Polytechnic University Press, St. Petersburg (2010)Google Scholar
  10. 10.
    Freidin, A.: Chemical affinity tensor and stress-assist chemical reactions front propagation in solids. In: ASME 2013 International Mechanical Engineering Congress and Exposition, Vol. 9: Mechanics of Solids, Structures and Fluids. San Diego, California, USA, Paper No. IMECE 2013–64957, V009T10A102 (2013)Google Scholar
  11. 11.
    Freidin A.B., Vilchevskaya E.N., Korolev I.K.: Stress-assist chemical reactions front propagation in deformable solids. Int. J. Eng. Sci. 83, 57–75 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Freidin, A.: On a chemical affinity tensor for chemical reactions in deformable solids. Mech. Solids 50, 260–285 (2015)Google Scholar
  13. 13.
    Gibbs J.: The Collected Works of J.W. Gibbs, Vol. 1: Thermodynamics. Yale University Press, Yale (1948)Google Scholar
  14. 14.
    Glansdorff P., Prigogine I.: Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience, London (1971)zbMATHGoogle Scholar
  15. 15.
    Grinfeld M.: Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman, New York (1991)Google Scholar
  16. 16.
    Gusev E., Lu H., Gustafsson T., Garfunkel E.: Growth mechanism of thin silicon oxide films on Si(100) studied by medium-energy ion scattering. Phys. Rev. B 52, 1759–1775 (1995)CrossRefGoogle Scholar
  17. 17.
    Hopcroft M.A., Nix W.D., Kenny T.W.: What is the Young’s Modulus of Silicon?. J. Microelectromech. Syst. 19, 229 (2010)CrossRefGoogle Scholar
  18. 18.
    Jacobson N.S., Fox D.S., Opilab E.J.: High temperature oxidation of ceramic matrix composites. Pure Appl. Chem. 70, 493–500 (1998)CrossRefGoogle Scholar
  19. 19.
    Kao, D., McVitie, J., Nix, W., Saraswat, K.: Two dimensional thermal oxidation of silicon-ii. modeling stress effect in wet oxides. IEEE Trans. Electron Devices ED-35 (1988) 25–37Google Scholar
  20. 20.
    Kelly S., Clemens B.: Moving interface hydride formation in multilayered metal thin films. J. Appl. Phys. 108, 013521 (2010)CrossRefGoogle Scholar
  21. 21.
    Kikkinides E.: Design and optimization of hydrogen storage units using advanced solid materials: General mathematical framework and recent developments. Comput. Chem. Eng. 35, 1923–1936 (2011)CrossRefGoogle Scholar
  22. 22.
    Knyazeva A.G.: Cross effects in solid media with diffusion. J. Appl. Mech. Tech. Phys. 44, 373–384 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Krzeminski C., Han X.-L., Larrieu G.: Understanding of the retarder oxidation effects in silicon nanostructures. Appl. Phys. Lett. 100, 266311 (2012)CrossRefGoogle Scholar
  24. 24.
    Kublanov L.B., Freidin A.B.: Solid phase seeds in a deformable material. J. Appl. Math. Mech. (PMM USSR) 52, 382–389 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Kunin I.A.: Elastic Media with Microstructure, vol. 2. Springer, Berlin (1983)CrossRefGoogle Scholar
  26. 26.
    Liu H.I., Biegelsen D.K., Ponce F.A., Johnson N.M., Pease R.F.W.: Selflimiting oxidation for fabricating sub5 nm silicon nanowires. Appl. Phys. Lett. 64, 1383–1385 (1994)CrossRefGoogle Scholar
  27. 27.
    Muhlstein C., Ritchie R.: High-cycle fatigue of micron-scale polycrystalline silicon films: fracture mechanics analyses of the role of the silica/silicon interface. Int. J. Fract. 119, 449–4745 (2003)CrossRefGoogle Scholar
  28. 28.
    Nanko M.: High-temperature oxidation of ceramic matrix composites dispersed with metallic particles. Sci. Technol. Adv. Mater. 6, 129–134 (2005)CrossRefGoogle Scholar
  29. 29.
    Okada R., Iijima S.: Oxidation property of silicon small particles. Appl. Phys. Lett. 58, 1662–1663 (1991)CrossRefGoogle Scholar
  30. 30.
    Prigogine I., Defay R.: Chemical Thermodynamics. Longmans, Green, London (1988)Google Scholar
  31. 31.
    Rafferty, C.: Stress effects in silicon oxidation-simulation and experiments. PhD dissertation, Tech. rep., Stanford University (1989)Google Scholar
  32. 32.
    Rosencher E., Straboni A., Rigo S., Amsel G.: An 18O study of the thermal oxidation of silicon in oxygen. Appl. Phys. Lett. 34, 254–257 (1979)CrossRefGoogle Scholar
  33. 33.
    Rusanov A.I.: Surface thermodynamics revisited. Surf. Sci. Rep. 58, 111–239 (2005)CrossRefGoogle Scholar
  34. 34.
    Rusanov A.I.: Thermodynamic foundations of mechanochemistry. Saint-Petersburg, Nauka (2006)Google Scholar
  35. 35.
    Sutardja P., Oldham W.: Modeling of stress effects in silicon oxidation. IEEE Trans. Electron Devices 36, 2415–2421 (1989)CrossRefGoogle Scholar
  36. 36.
    Toribio, J., Kharin, V., Lorenzo, M., Vergara, D.: Role of drawing-induced residual stresses and strains in the hydrogen embrittlement susceptibility of prestressing steels. Corros. Sci. 10, 3346–3355 (2011)Google Scholar
  37. 37.
    Trimaille I., Rigo S.: Use of 18O isotopic labeling to study the thermal dry oxidation of silicon as a function of temperature and pressure. Appl. Surf. Sci. 39, 65–80 (1989)CrossRefGoogle Scholar
  38. 38.
    Vilchevskaya, E.N., Freidin, A.B.: Modelling a chemical reaction front propagation in elastic solids: 1d case. In: Indeitsev, D.A., Krivtsov, A.M. (eds.) Proceedings of XXXVI International Summer School-Conference Advance Problems in Mechanics (APM 2009), Institute for Problems in Mechanical Engineering, St. Petersburg, pp. 681–691 (2009)Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • A. Freidin
    • 1
    • 2
    • 3
  • N. Morozov
    • 2
  • S. Petrenko
    • 2
  • E. Vilchevskaya
    • 1
    • 3
  1. 1.Institute for Problems in Mechanical Engineering of Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations