Acta Mechanica

, Volume 227, Issue 2, pp 279–310 | Cite as

Continuum effective-stress approach for high-rate plastic deformation of fluid-saturated geomaterials with application to shaped-charge jet penetration

  • Michael A. HomelEmail author
  • James E. Guilkey
  • Rebecca M. Brannon
Original Paper


A practical engineering approach for modeling the constitutive response of fluid-saturated porous geomaterials is developed and applied to shaped-charge jet penetration in wellbore completion. An analytical model of a saturated thick spherical shell provides valuable insight into the qualitative character of the elastic–plastic response with an evolving pore fluid pressure. However, intrinsic limitations of such a simplistic theory are discussed to motivate the more realistic semi-empirical model used in this work. The constitutive model is implemented into a material point method code that can accommodate extremely large deformations. Consistent with experimental observations, the simulations of wellbore perforation exhibit appropriate dependencies of depth of penetration on pore pressure and confining stress.


Pore Pressure Bulk Modulus Volumetric Strain Berea Sandstone Material Point Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karrech A., Poulet T., Regenauer-Lieb K.: Poromechanics of saturated media based on the logarithmic finite strain. Mech. Mater. 51, 118–136 (2012)CrossRefGoogle Scholar
  2. 2.
    Wang H.F.: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton Press, Princeton (2000)Google Scholar
  3. 3.
    Swan C., Lakes R., Brand R., Stewart K.: Micromechanically based poroelastic modeling of fluid flow in haversian bone. Trans. ASME J. Biomech. Eng. 125, 25–37 (2003)CrossRefGoogle Scholar
  4. 4.
    Kohles, S.S., Roberts, J.B. et al.: Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport 799 properties. Trans. ASME J. Biomech. Eng. 124, 521–526 (2002)Google Scholar
  5. 5.
    Borja R.I.: On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct. 43, 1764–1786 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gupta A., Bayraktar H.H., Fox J.C., Keaveny T.M., Papadopoulos P.: Constitutive modeling and algorithmic implementation of a plasticity-like model for trabecular bone structures. Comput. Mech. 40, 61–72 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Scambos T.A., Hulbe C., Fahnestock M., Bohlander J.: The link between climate warming and break-up of ice shelves in the antarctic peninsula. J. Glaciol. 46, 516–530 (2000)CrossRefGoogle Scholar
  8. 8.
    Kamb B.: Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream motion. J. Geophys. Res. Solid Earth (1978–2012) 96, 16585–16595 (1991)CrossRefGoogle Scholar
  9. 9.
    Strack, O.E., Leavy, R.B., Brannon, R.M.: Aleatory uncertainty and scale effects in computational damage models for failure and fragmentation. Int. J. Numer. Methods Eng. Special Issue celebrating the 70th birthday of Ted Belytschko (2014)Google Scholar
  10. 10.
    Geiser N.K.F., Blight G.: Effective stress in unsaturated soils: Review with new evidence. Int. J. Geomech. 4, 115–126 (2004)CrossRefGoogle Scholar
  11. 11.
    Terzaghi, K.: The shearing resistance of saturated soils and the angle between planes of shear. In: First International Conference on Soil Mech. and Found. Engr., Harvard University I, pp. 54–56 (1936)Google Scholar
  12. 12.
    Fillunger P.: Versuche über die Zugfestigkeit bei allseitigem Wasserduck. Oesterr. Wochenschrift oeffent. Baudienst 29, 443–448 (1915)Google Scholar
  13. 13.
    Schrefler B.A., Gawin D.Z.: The effective stress principle: incremental or finite form?. Int. J. Numer. Anal. Methods Geomech. 20, 785–814 (1996)CrossRefGoogle Scholar
  14. 14.
    Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. i. low-frequency range. J. Acoust. Soc. Am. 28, 168 (1956)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Biot M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefzbMATHGoogle Scholar
  16. 16.
    Nedjar B.: Formulation of a nonlinear porosity law for fully saturated porous media at finite strains. J. Mech. Phys. Solids 61, 537–556 (2013)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Nur A., Byerlee J.: An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. 76, 6414–6419 (1971)CrossRefGoogle Scholar
  18. 18.
    Sun D., Sheng D., Sloan S.W.: Elastoplastic modelling of hydraulic and stress–strain behaviour of unsaturated soils. Mech. Mater. 39, 212–221 (2007)CrossRefGoogle Scholar
  19. 19.
    Anandarajah A.: Computational Methods in Elasticity and Plasticity: Solids and Porous Media. Springer, New York (2010)CrossRefGoogle Scholar
  20. 20.
    Scholts L., Hicher P.-Y., Nicot F., Chareyre B., Darve F.: On the capillary stress tensor in wet granular materials. Int. J. Numer. Anal. Methods Geomech. 33, 1289–1313 (2009). doi: 10.1002/nag.767 CrossRefGoogle Scholar
  21. 21.
    Xie S., Shao J.: Experimental investigation and poroplastic modelling of saturated porous geomaterials. Int. J. Plast 39, 27–45 (2012). doi: 10.1016/j.ijplas.2012.05.007 CrossRefGoogle Scholar
  22. 22.
    Sheng, D., Zhang, S., Yu, Z.: Unanswered questions in unsaturated soil mechanics, Science China Technological Sciences, pp. 1–16 (2013)Google Scholar
  23. 23.
    Nedjar B.: Poromechanics approach for modeling closed-cell porous materials with soft matrices. Int. J. Solids Struct. 50, 3184–3189 (2013)CrossRefGoogle Scholar
  24. 24.
    Jaegar J., Cook N.: Fundamentals of Rock Mechanics. Chapman Hall, New York (1976)Google Scholar
  25. 25.
    Goodman R.: Introduction to Rock Mechanics. Wiley, New York (1980)Google Scholar
  26. 26.
    Buhan P.D., Dormieux L.: On the validity of the effective stress concept for assessing the strength of saturated porous materials: a homogenization approach. J. Mech. Phys. Solids 44, 1649–1667 (1996)CrossRefGoogle Scholar
  27. 27.
    Barthelemy, J., Dormieux, L.: On the existence of an effective stress in poroplasticity. In: Poromechanics III-Biot Centennial (1905–2005): Proceedings of the 3rd Biot conference on poromechanics, 24–27 May 2005, Norman, Oklahoma, USA, Vol. 1000, Taylor & Francis, 2010Google Scholar
  28. 28.
    Coussy O.: Mechanics of Porous Continua. Wiley, Chichester (1995)zbMATHGoogle Scholar
  29. 29.
    Lomov I., Hiltl M., Vorobiev O.Y., Glenn L.: Dynamic behavior of berea sandstone for dry and water-saturated conditions. Int. J. Impact Eng. 26, 465–474 (2001)CrossRefGoogle Scholar
  30. 30.
    Wilmanski K.: A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dyn. Earthq. Eng. 26, 509–536 (2006)CrossRefGoogle Scholar
  31. 31.
    Cooper, P.W.: Scaling and explosives engineering applications. Sandia National Laboratories Short Course XPL204Google Scholar
  32. 32.
    Grove B., Heiland J., Walton I.: Geologic materials’ response to shaped charge penetration. Int. J. Impact Eng. 35, 1563–1566 (2008)CrossRefGoogle Scholar
  33. 33.
    Lee N.-S., Bathe K.-J.: Error indicators and adaptive remeshing in large deformation finite element analysis. Finite Elem. Anal. Des. 16, 99–139 (1994). doi: 10.1016/0168-874X(94)90044-2 CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Antoun T., Glenn L., Walton O., Goldstein P., Lomov I., Liu B.: Simulation of hypervelocity penetration in limestone. Int. J. Impact Eng. 33, 45–52 (2006)CrossRefGoogle Scholar
  35. 35.
    Liu W.K., Belytschko T., Chang H.: An arbitrary Lagrangian-Eulerian finite element method for path-dependent materials. Comput. Methods Appl. Mech. Eng. 58, 227–245 (1986)CrossRefzbMATHGoogle Scholar
  36. 36.
    Bardenhagen S., Brackbill J., Sulsky D.: The material-point method for granular materials. Comput. Methods. Appl. Mech. Eng. 187, 529–541 (2000)CrossRefzbMATHGoogle Scholar
  37. 37.
    Guilkey, J., Harman, T., Luitjens, J., Schmidt, J., Thornock, J., Davison de St. Germain, J., Shankar, S., Peterson, J., Brownlee, C.: Uintah user guide version 1.1, SCI Institute, University of Utah UUSCI-2009-007Google Scholar
  38. 38.
    Carroll M.M., Holt A.C.: Static and dynamic pore collapse relations for ductile porous materials. J. Appl. Phys. 43, 1626–1636 (1972)CrossRefGoogle Scholar
  39. 39.
    de Borst R., Pamin J., Geers M.G.: On coupled gradient-dependent plasticity and damage theories with a view to localization analysis. Eur. J. Mech. A Solids 18, 939–962 (1999)CrossRefzbMATHGoogle Scholar
  40. 40.
    Morris J., Lomov I., Glenn L.: A constitutive model for stress-induced permeability and porosity evolution of berea sandstone. J. Geophys. Res. 108, 2485 (2003)CrossRefGoogle Scholar
  41. 41.
    Gassmann F.: Elasticity of porous media. Vierteljahrsschrift der Naturforschenden Gesellschaft 96, 1–23 (1951)MathSciNetGoogle Scholar
  42. 42.
    Hart D.J., Wang H.F.: Laboratory measurements of a complete set of poroelastic moduli for berea sandstone and indiana limestone. J. Geophys. Res. Solid Earth (1978–2012) 100, 17741–17751 (1995)CrossRefGoogle Scholar
  43. 43.
    Pietruszczak S., Pande G.: On the mechanical response of saturated cemented materials—part i: theoretical considerations. Int. J. Numer. Anal. Methods Geomech. 19, 555–562 (1995)CrossRefzbMATHGoogle Scholar
  44. 44.
    Simo J., Hughes T.: Computational Inelasticity, Interdisciplinary Applied Mathematics: Mechanics and Materials. Springer, New York (1998)Google Scholar
  45. 45.
    Brannon R., Fossum A., Strack O.: Kayenta: theory and user’s guide. Sandia Rep. 2009, 393–397 (2009)Google Scholar
  46. 46.
    Li Y.-H.: Equation of state of water and sea water. J. Geophys. Res. 72, 2665–2678 (1967)CrossRefGoogle Scholar
  47. 47.
    Sulsky D., Zhou S., Schreyer H.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236–252 (1995)CrossRefzbMATHGoogle Scholar
  48. 48.
    Bardenhagen S., Kober E.: The generalized interpolation material point method. Comput. Model. Eng. Sci. 5, 477–496 (2004)Google Scholar
  49. 49.
    Austin, D.: Verification and validation of a geomodel aimed at simulating wellbore completion via shaped-charge jet perforation of metal and penetration into sandstone, Master’s thesis, University of Utah (2013)Google Scholar
  50. 50.
    Homel, M., Sadeghirad, A., Austin, D., Colovos, J., Brannon, R., Guilkey, J.: Arenisca: theory and users guide, Tech. rep., University of Utah (2014)Google Scholar
  51. 51.
    Bobich, J.K.: Experimental analysis of the extension to shear fracture transition in berea sandstone, Ph.D. thesis, Texas A&M University (2005)Google Scholar
  52. 52.
    Burghardt J., Brannon R., Guilkey J.: A nonlocal plasticity formulation for the material point method. Comput. Methods. Appl. Mech. Eng. 225, 55–64 (2012)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Huang H.: Characterization of powder metal jet and penetration calculation. Procedia Eng. 58, 471–478 (2013)CrossRefGoogle Scholar
  54. 54.
    Burghardt, J., Leavy, B., Guilkey, J., Xue, Z., Brannon, R.: Application of uintah-mpm to shaped charge jet penetration of aluminum. In: 9th World Congress on Computational Mechanics, IOP Conference Series: Materials Science and Engineering, v.10., (2010)Google Scholar
  55. 55.
    Fuller T., Brannon R.: On the effects of deformation induced anisotropy in isotropic materials. Int. J. Numer. Anal. Methods Geomech. 37, 1079–1094 (2013)CrossRefGoogle Scholar
  56. 56.
    Mast C., Mackenzie-Helnwein P., Arduino P., Miller G., Shin W.: Mitigating kinematic locking in the material point method. J. Comput. Phys. 231, 5351–5373 (2012)CrossRefMathSciNetGoogle Scholar
  57. 57.
    Austin, D.M.: Verification and validation of a geomodel aimed at simulating wellbore completion via shaped-charge jet perforation of metal and penetration into sandstone, The University of Utah, 2013Google Scholar
  58. 58.
    Pivonka P., Willam K.: The effect of the third invariant in computational plasticity. Eng. Comput. 20, 741–753 (2003)CrossRefzbMATHGoogle Scholar
  59. 59.
    Schreyer H.L., Bean J.E.: Third-invariant model for rate-dependent soils. J. Geotech. Eng. 111, 181–192 (1985)CrossRefGoogle Scholar
  60. 60.
    Homel, M.A.: Elastoplastic constitutive modeling of fluid-saturated porous materials with new methods for numerical solution and mesoscale validation. Dissertation, University of Utah (2015)Google Scholar
  61. 61.
    Harvey, J., Grove, B., Zhan, L., et al.: Stressed rock penetration depth correlation. In: Paper SPE 151846 presented at the 2012 SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, LA, 2012Google Scholar
  62. 62.
    Fuller, T.J., Brannon, R.M., Strack, O.E., Bishop, J.E.: Initial inclusion of thermodynamic considerations in Kayenta. Sandia National Laboratories Technical Report SAND2010-4687 (2010)Google Scholar
  63. 63.
    Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (1985)Google Scholar
  64. 64.
    Vorobiev O.Y., Liu B., Lomov I., Antoun T.: Simulation of penetration into porous geologic media. Int. J. Impact Eng. 34, 721–731 (2007)CrossRefGoogle Scholar
  65. 65.
    Brannon R.M.: Elements of Phenomenological Plasticity. Springer, Berlin (2007)Google Scholar
  66. 66.
    Homel, M.A., Guilkey J.E., Brannon, R.M.: Numerical solution for plasticity models using consistency bisection and a transformed-space closest-point return: A nongradient solution method. Comput. Mech. (2015) (Accepted)Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Michael A. Homel
    • 1
    • 2
    Email author
  • James E. Guilkey
    • 1
  • Rebecca M. Brannon
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Lawrence Livermore National Laboratory 4000 East AveLivermoreUSA

Personalised recommendations