Acta Mechanica

, Volume 226, Issue 10, pp 3451–3462 | Cite as

Optimal configuration of piezoelectric sensors and actuators for active vibration control of a plate using a genetic algorithm

  • Mojtaba Biglar
  • Magdalena Gromada
  • Feliks Stachowicz
  • Tomasz Trzepieciński
Open Access
Original Paper

Abstract

The purpose of this study is to suggest a new formulation for active vibration control of a rectangular plate based on the optimal positions/orientations of piezoelectric actuators/sensors attached to the plate. The free vibration and modal properties are derived by using Rayleigh–Ritz and the transient response by assumed modes methods based on the classical plate theory. Three criteria are proposed for optimal location of piezoelectric patches attached to the simply supported plate. In other words, the optimal positions/orientations of piezoelectric patches can be determined based on spatial controllability/observability gramians of the structure, as well as the consideration of residual modes to reduce the spillover effect. These criteria are used to achieve the optimal fitness function defined for a genetic algorithm optimizer to find the optimal locations/orientations of piezoelectric sensors/actuators. To control the vibrations of the plate, a negative velocity feedback control algorithm is designed. The results of simulations indicate that by locating piezoelectric patches in the optimal positions, the depreciation rate of the structure increases and the amplitudes of the plate vibrations reduce effectively. The effect of number of piezoelectric devices on the active damping property of the system is also analyzed.

References

  1. 1.
    Zhang Y.H., Xie S.L., Zhang X.N.: Vibration control of a simply supported cylindrical shell using a laminated piezoelectric actuator. Acta Mech. 196, 87–101 (2008)CrossRefMATHGoogle Scholar
  2. 2.
    Sarangi S.K., Ray M.C.: Active damping of geometrically nonlinear vibrations of laminated composite plates using vertically reinforced 1–3 piezoelectric composites. Acta Mech. 222, 363–380 (2011)CrossRefMATHGoogle Scholar
  3. 3.
    Kumar, K.R., Narayanan, S.: Active vibration control of beams with optimal placement of piezoelectric sensors/actuator pairs. Smart Mat. Struct. 17, 055008 (2008)Google Scholar
  4. 4.
    Bruant I., Coffignal G., Le’ne’ F., Verge’ M.: A methodology for determination of piezoelectric actuator and sensor location on beam structures. J. Sound Vib. 243, 862–882 (2001)CrossRefGoogle Scholar
  5. 5.
    Hac A., Liu L.: Sensor and actuator location in motion control of flexible structures. J. Sound Vib. 167, 239–261 (1993)CrossRefMATHGoogle Scholar
  6. 6.
    Qiu Z.-C., Zhang X.-M., Wu H.-X., Zhang H.-H.: Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate. J. Sound Vib. 301, 521–543 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Sadri A.M., Wright J.R., Wynne R.J.: Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms. Smart Mat. Struct. 8, 490–498 (1999)CrossRefGoogle Scholar
  8. 8.
    Bruant I., Gallimard L., Nikoukar S.: Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm. J. Sound Vib. 329, 1615–1635 (2010)CrossRefGoogle Scholar
  9. 9.
    Han J.H., Lee I.: Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms. Smart Mat. Struct. 8, 257–267 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Halim D., Reza Moheimani S.O.: An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate. Mechatronics 13, 27–47 (2003)CrossRefGoogle Scholar
  11. 11.
    Yang S., Lee Y.: Optimization of noncollocated sensor/actuator location and feedback gain in control systems. Smart Mat. Struct. 2, 96–102 (1993)CrossRefGoogle Scholar
  12. 12.
    Kumar R., Mishra B.K., Jain S.C.: Static and dynamic analysis of smart cylindrical shell. Finite Elem. Anal. Des. 45, 13–24 (2008)CrossRefGoogle Scholar
  13. 13.
    Kwak M.K., Heo S.: Active vibration control of smart grid structure by multiinput and multioutput positive position feedback controller. J. Sound Vib. 304, 230–245 (2007)CrossRefGoogle Scholar
  14. 14.
    Yiqi M., Yiming F.: Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate. J. Sound Vib. 329, 2015–2028 (2010)CrossRefGoogle Scholar
  15. 15.
    He X.Q., Ng T.Y., Sivashanker S., Liew K.M.: Active control of FGM plates with integrated piezoelectric sensors and actuators. Int. J. Solids Struct. 38, 1641–1655 (2001)CrossRefMATHGoogle Scholar
  16. 16.
    Leo D.J.: Engineering Analysis of Smart Material Systems. Wiley, New York (2007)CrossRefGoogle Scholar
  17. 17.
    Inman D.J.: Vibration with Control. Wiley, New York (2006)CrossRefGoogle Scholar
  18. 18.
    Reza Moheimani S.O., Halim D., Fleming A.J.: Spatial Control of Vibration Theory and Experiments. World Scientific, New York (2002)Google Scholar
  19. 19.
    Reza Moheimani, S.O., Fu, M.: Spatial H2 norm of flexible structures and its application in model order selection. In: Proceedings of the 37th IEEE Conference on Decision & Control, pp. 3623–3624, Tampa, USA (1998)Google Scholar
  20. 20.
    Reza Moheimani, S.O., Ryall, T.: Considerations in placement of piezoceramic actuators that are used in structural vibration control. In: Proceedings of the 38th IEEE Conference on Decision & Control, pp. 1118–1123, Phoenix, USA (1999)Google Scholar
  21. 21.
    Sivanandam S.N., Deepa S.N.: Introduction to Genetic Algorithms. Springer, New York (2008)MATHGoogle Scholar
  22. 22.
    Yang Y., Jin Z., Kiong Soh C.: Integrated optimal design of vibration control system for smart beams using genetic algorithms. J. Sound Vib. 282, 1293–1307 (2005)CrossRefGoogle Scholar
  23. 23.
    Liu W., Gao W.C., Sun Y., Xu M.J.: Optimal sensor placement for spatial lattice structure based on genetic algorithms. J. Sound Vib. 317, 175–189 (2008)CrossRefGoogle Scholar
  24. 24.
    Hasancebi H., Erbatur F.: Layout optimization of trusses using improved GA methodologies. Acta Mech. 146, 87–107 (2001)CrossRefMATHGoogle Scholar
  25. 25.
    Chiba R., Sugano Y.: Optimisation of material composition of functionally graded materials based on multiscale thermoelastic analysis. Acta Mech. 223, 891–909 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mojtaba Biglar
    • 1
  • Magdalena Gromada
    • 2
  • Feliks Stachowicz
    • 1
  • Tomasz Trzepieciński
    • 1
  1. 1.Department of Materials Forming and ProcessingRzeszow University of TechnologyRzeszowPoland
  2. 2.Ceramic Department, CERELInstitute of Power EngineeringBoguchwałaPoland

Personalised recommendations