Advertisement

Acta Mechanica

, Volume 226, Issue 6, pp 2065–2076 | Cite as

Moving Dugdale crack along the interface of two dissimilar magnetoelectroelastic materials

  • Keqiang Hu
  • Zengtao Chen
  • Jiawei Fu
Article

Abstract

In this paper, the concept of Dugdale crack model and Yoffe model is extended to propose a moving Dugdale interfacial crack model, and the interfacial crack between dissimilar magnetoelectroelastic materials under anti-plane shear and in-plane electric and magnetic loadings is investigated considering the magneto-electro-mechanical nonlinearity. It is assumed that the constant moving crack is magneto-electrically permeable and the length of the crack keeps constant. Fourier transform is applied to reduce the mixed boundary value problem of the crack to dual integral equations, which are solved exactly. The explicit expression of the size of the yield zone is derived, and the crack sliding displacement (CSD) is explicitly expressed. The result shows that the stress, electric and magnetic fields in the cracked magnetoelectroelastic material are no longer singular and the CSD is dependent on the loading, material properties and crack moving velocity. The current model can be reduced to the static interfacial crack case when the crack moving velocity is zero.

Keywords

Stress Intensity Factor Yield Zone Permeable Crack Dual Integral Equation Electric Displacement Intensity Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alshits V.I., Darinskii A.N., Lothe J.: On the existence of surface-waves in half-infinite anisotropic elastic media with piezoelectric and piezomagnetic properties. Wave Motion 16, 265–283 (1992)CrossRefzbMATHGoogle Scholar
  2. 2.
    Zhao M., Fan C.: Strip electric–magnetic breakdown model in a magnetoelectroelastic medium. J. Mech. Phys. Solids 56, 3441–3458 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Gao C.F., Tong P., Zhang T.Y.: Interfacial crack problems in magneto-electroelastic solids. Int. J. Eng. Sci. 41, 2105–2121 (2003)CrossRefGoogle Scholar
  4. 4.
    Hu K.Q., Kang Y.L., Li G.Q.: Moving crack at the interface between two dissimilar magnetoelectroelastic materials. Acta Mech. 182, 1–16 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Li R., Kardomateas G.A.: The mixed mode I and II interface crack in piezoelectromagneto–elastic anisotropic bimaterials. ASME J. Appl. Mech. 74, 614–627 (2007)CrossRefGoogle Scholar
  6. 6.
    Hu K.Q., Chen Z.T.: An interface crack moving between magnetoelectroelastic and functionally graded elastic layers. Appl. Math. Model. 38, 910–925 (2014)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hu K.Q., Chen Z.T., Fu J.W.: Dynamic analysis of an interface crack between magnetoelectroelastic and functionally graded elastic layers under anti-plane mechanical and in-plane electro-magnetic loadings. Compos. Struct. 107, 142–148 (2014)CrossRefGoogle Scholar
  8. 8.
    Li X.F.: Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and magnetic impacts. Int. J. Solids Struct. 42, 3185–3205 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Feng W.J., Pan E., Wang X.: Dynamic fracture analysis of a penny-shaped crack in a magnetoelectroelastic layer. Int. J. Solids Struct. 44, 7955–7974 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hu K.Q., Chen Z.T.: Pre-curving analysis of an opening crack in a magnetoelectroelastic strip under in-plane impact loadings. J. Appl. Phys. 112, 124911 (2012)CrossRefGoogle Scholar
  11. 11.
    Hu K.Q., Chen Z.T.: Dynamic response of a cracked magnetoelectroelastic layer sandwiched between two elastic layers. Z. Angew. Math. Mech. 93, 676–687 (2013)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hu K.Q., Chen Z.T.: Pre-kinking of a moving crack in a magnetoelectroelastic material under in-plane loading. Int. J. Solids Struct. 50, 2667–2677 (2013)CrossRefGoogle Scholar
  13. 13.
    Yoffe E.H.: The moving Griffith crack. Philos. Mag. 42, 739–750 (1951)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Freund L.B.: Crack propagation in an elastic solid subjected to general loading—I. Constant rate of extension. J. Mech. Phys. Solids 20, 129–140 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Yang W., Suo Z., Shih C.F.: Mechanics of dynamic debonding. Proc. R. Soc. A Math. Phy. 433, 679–697 (1991)CrossRefzbMATHGoogle Scholar
  16. 16.
    Chen Z.T., Karihaloo B.L., Yu S.W.: A Griffith crack moving along the interface of two dissimilar piezoelectric materials. Int. J. Fract. 91, 197–203 (1998)CrossRefGoogle Scholar
  17. 17.
    Li C., Weng G.: Yoffe-type moving crack in a functionally graded piezoelectric material. Proc. R. Soc. Lond. A Math. 458, 381–399 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Soh A.K., Liu J.X., Lee K.L., Fang D.N.: On a moving Griffith crack in anisotropic piezoelectric solids. Arch. Appl. Mech. 72, 458–469 (2002)CrossRefzbMATHGoogle Scholar
  19. 19.
    Wang X., Zhong Z., Wu F.L.: A moving conducting crack at the interface of two dissimilar piezoelectric materials. Int. J. Solids Struct. 40, 2381–2399 (2003)CrossRefzbMATHGoogle Scholar
  20. 20.
    Hu K.Q., Chen Z.T., Zhong Z.: Pre-kinking analysis of a constant moving crack in a magnetoelectroelastic strip under in-plane loading. Eur. J. Mech. A Solids 43, 25–43 (2014)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Dugdale D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)CrossRefGoogle Scholar
  22. 22.
    Fan T.Y.: Moving Dugdale model. Z. Angew. Math. Phys. 38, 630–641 (1987)CrossRefzbMATHGoogle Scholar
  23. 23.
    Gao H.J., Zhang T.Y., Tong P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510 (1997)CrossRefGoogle Scholar
  24. 24.
    Narita F., Shindo Y.: Fatigue crack propagation in a piezoelectric ceramic strip subjected to mode III loading. Acta Mech. 137, 55–63 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Li S.: On saturation-strip model of a permeable crack in a piezoelectric ceramic. Acta Mech. 165, 47–71 (2003)CrossRefzbMATHGoogle Scholar
  26. 26.
    Zhang T.Y., Zhao M.H., Gao C.F.: The strip dielectric breakdown model. Int. J. Fract. 132, 311–327 (2005)CrossRefzbMATHGoogle Scholar
  27. 27.
    Fan C.Y., Zhao Y.F., Zhao M.H., Pan E.N.A.: Analytical solution of a semi-permeable crack in a 2D piezoelectric medium based on the PS model. Mech. Res. Commun. 40, 34–40 (2012)CrossRefGoogle Scholar
  28. 28.
    Wang B.L., Zhang X.H.: An electrical field based non-linear model in the fracture of piezoelectric ceramics. Int. J. Solids Struct. 41, 4337–4347 (2004)CrossRefzbMATHGoogle Scholar
  29. 29.
    Hu K.Q., Li G.Q.: Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading. Int. J. Solids Struct. 42, 2823–2835 (2005)CrossRefzbMATHGoogle Scholar
  30. 30.
    Wang B.L., Mai Y.W.: Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. Int. J. Solids Struct. 44, 387–398 (2007)CrossRefzbMATHGoogle Scholar
  31. 31.
    Gao C.F., Tong P., Zhang T.Y.: Fracture mechanics for a mode III crack in a magnetoelectroelastic solid. Int. J. Solids Struct. 41, 6613–6629 (2004)CrossRefzbMATHGoogle Scholar
  32. 32.
    Zhou Z., Chen Z.: Fracture mechanics analysis of a partially conducting mode I crack in piezoelectromagnetic materials. Eur. J. Mech. A Solid 27, 824–846 (2008)CrossRefzbMATHGoogle Scholar
  33. 33.
    Sladek J., Sladek V., Zhang C.Z., Wunsche M.: Semi-permeable crack analysis in magnetoelectroelastic solids. Smart Mater. Struct. 21, 025003 (2012)CrossRefGoogle Scholar
  34. 34.
    Copson E.: On certain dual integral equations. Proc. Glasg. Math. Assoc. 5, 21–24 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Gradshteyn I.S., Ryzhik R.M.: Table of Integrals, Series, and Products. Academic Press, Amsterdam (2007)zbMATHGoogle Scholar
  36. 36.
    Fang D.N., Zhang Z.K., Soh A.K., Lee K.L.: Fracture criteria of piezoelectric ceramics with defects. Mech. Mater. 36, 917–928 (2004)CrossRefGoogle Scholar
  37. 37.
    Huang J.H., Chiu Y.H., Liu H.K.: Magneto-electro-elastic Eshelby tensors for a piezoelectric–piezomagnetic composite reinforced by ellipsoidal inclusions. J. Appl. Phys. 83, 5364–5370 (1998)CrossRefGoogle Scholar
  38. 38.
    Li R., Kardomateas G.A.: The mode III interface crack in piezo-electro-magneto-elastic dissimilar biomaterials. ASME J. Appl. Mech. 73, 220–227 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Department of Mechanical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations