Acta Mechanica

, Volume 225, Issue 8, pp 2227–2237 | Cite as

Effect of boundary vibration on the frictional behavior of a dense sheared granular layer

  • B. FerdowsiEmail author
  • M. Griffa
  • R. A. Guyer
  • P. A. Johnson
  • J. Carmeliet


We report results of 3D discrete element method simulations aiming at investigating the role of the boundary vibration in inducing frictional weakening in sheared granular layers. We study the role of different vibration amplitudes applied at various shear stress levels, for a granular layer in the stick-slip regime and in the steady-sliding regime. Results are reported in terms of friction drops and kinetic energy release associated with frictional weakening events. We find that a larger vibration amplitude induces larger frictional weakening events. The results show evidence of a threshold below which no induced frictional weakening takes place. Friction drop size is found to be dependent on the shear stress at the time of vibration. A significant increase in the ratio between the number of slipping contacts to the number of sticking contacts in the granular layer is observed for large vibration amplitudes. These vibration-induced contact rearrangements enhance particle mobilization and induce a friction drop and kinetic energy release. This observation provides some insight into the grain-scale mechanisms of frictional weakening by boundary vibration in a dense sheared granular layer. In addition to characterizing the basic physics of vibration-induced shear weakening, we are attempting to understand how a fault fails in the earth under seismic wave forcing. This is the well-known phenomenon of dynamic earthquake triggering. We believe that the granular physics are key to this understanding.


Vibration Amplitude Granular Layer Shear Stress Level Kinetic Energy Release Large Vibration Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brace W.F., Byerlee J.D.: Stick-slip as a mechanism for earthquakes. Science 153(3739), 990–992 (1966)CrossRefGoogle Scholar
  2. 2.
    Brace, W.F., Byerlee, J.D.: California earthquakes: why only shallow focus? Science 168(3939), 1573–1575 (1970)Google Scholar
  3. 3.
    Johnson T., Wu F.T., Scholz C.H., Url S.: Source parameters for stick-slip and for earthquakes. Science 179(4070), 278–280 (1973)CrossRefGoogle Scholar
  4. 4.
    Daniels K.E., Hayman N.W.: Force chains in seismogenic faults visualized with photoelastic granular shear experiments. J. Geophys. Res. 113(B11), 1–13 (2008)Google Scholar
  5. 5.
    Hayman, N.W., Ducloué, L., Foco, K.L., Daniels, K.E.: Granular controls on periodicity of stick-slip events: kinematics and force-chains in an experimental fault. Pure Appl. Geophys. 168(12), 2239–2257 (2011)Google Scholar
  6. 6.
    Luding S., Clément E., Blumen A., Rajchenbach J., Duran J.: Studies of columns of beads under external vibrations. Phys. Rev. E 49, 1634 (1994)CrossRefGoogle Scholar
  7. 7.
    Savage H.M., Marone C.: Potential for earthquake triggering from transient deformations. J. Geophys. Res. 113, 1–15 (2008)Google Scholar
  8. 8.
    Janda A., Maza D., Garcimartín A., Lanuza J., Clément E.: Unjamming a granular hopper by vibration. Europhys. Lett. 87, 24002 (2009)CrossRefGoogle Scholar
  9. 9.
    Capozza R., Vanossi A., Vezzani A., Zapperi S.: Suppression of friction by mechanical vibrations. Phys. Rev. Lett. 103, 085502 (2009)CrossRefGoogle Scholar
  10. 10.
    Melhus M.F., Aranson I., Volfson D., Tsimring L.S.: Effect of noise on solid-to-liquid transition in small granular systems under shear. Phys. Rev. B 80, 041305 (2009)CrossRefGoogle Scholar
  11. 11.
    Jia X., Brunet T., Laurent J.: Elastic weakening of a dense granular pack by acoustic fluidization: slipping, compaction, and aging. Phys. Rev. E 84(84), 020301(R) (2011)CrossRefGoogle Scholar
  12. 12.
    van der Elst N., Brodsky E.E., Le Bas P.-Y., Johnson P. A.: Auto-acoustic compaction in steady shear flows: experimental evidence for suppression of shear dilatancy by internal acoustic vibration. J. Geophys. Res. 117, B09314 (2012)Google Scholar
  13. 13.
    Pollitz F., Stein R., Sevilgen V., Bürgmann R.: The 11 April 2012 east indian ocean earthquake triggered large aftershocks worldwide. Nature 490, 250–253 (2012)CrossRefGoogle Scholar
  14. 14.
    Shelly D.R., Peng Z., Hill D.P., Aiken C.: Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes. Nat. Geosci. 4(6), 384–388 (2011)CrossRefGoogle Scholar
  15. 15.
    Velasco A. A., Hernandez S., Parsons T., Pankow K.: Global ubiquity of dynamic earthquake triggering. Nat. Geosci. 1, 375–379 (2009)CrossRefGoogle Scholar
  16. 16.
    Marsan D., Lengline O.: Extending earthquakes’ reach through cascading. Science 319, 1076–1079 (2008)CrossRefGoogle Scholar
  17. 17.
    Gomberg J., Bodin P., Larson K., Dragert H.: Earthquake nucleation by transient deformations caused by the m =  7.9 Denali, Alaska, earthquake. Nature 427, 621–624 (2004)CrossRefGoogle Scholar
  18. 18.
    Gomberg J., Reasenberg P., Bodin P., Harris R.: Earthquake triggering by seismic waves following the landers and hector mine earthquakes. Nature 411(6836), 462–466 (2001)CrossRefGoogle Scholar
  19. 19.
    Freed A.M.: Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci. 33, 335–367 (2005)CrossRefGoogle Scholar
  20. 20.
    Falk M., Langer J.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57(6), 7192–7205 (1998)CrossRefGoogle Scholar
  21. 21.
    DiDonna B.A., Lubensky T.C.: Nonaffine correlations in random elastic media. Phys. Rev. E 72, 066619 (2005)CrossRefGoogle Scholar
  22. 22.
    Griffa M., Daub E.G., Guyer R.A., Johnson P.A., Marone C., Carmeliet J.: Vibration-induced slip in sheared granular layers and the micromechanics of dynamic earthquake triggering. Europhys. Lett. 96, 14001 (2011)CrossRefGoogle Scholar
  23. 23.
    Griffa M., Ferdowsi B., Daub E., Guyer R., Johnson P., Marone C., Carmeliet J.: Meso-mechanical analysis of deformation characteristics for dynamically triggered slip in a granular medium. Philos. Mag. 92, 3520–3539 (2012)CrossRefGoogle Scholar
  24. 24.
    Griffa M., Ferdowsi B., Daub E., Guyer R., Johnson P., Marone C., Carmeliet J.: Influence of vibration amplitude on dynamic triggering of slip in sheared granular layers. Phys. Rev. E 87, 012205 (2013)CrossRefGoogle Scholar
  25. 25.
    Schoepfer M.P.J., Abe S., Childs C., Walsh J.: The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insights from dem modelling. Int. J. Rock Mech. Min. Sci. 46, 250–261 (2009)CrossRefGoogle Scholar
  26. 26.
    Johnson P.A., Savage H., Knuth M., Gomberg J., Marone C.: Effects of acoustic waves on stick-slip in granular media and implications for earthquakes. Nature 451(7174), 57–60 (2008)CrossRefGoogle Scholar
  27. 27.
    Place D., Mora P.: The lattice solid model to simulate the physics of rocks and earthquakes: incorporation of friction. Comput. Phys. 150, 332–372 (1999)CrossRefzbMATHGoogle Scholar
  28. 28.
    Wang Y., Abe S., Latham S., Mora P.: Implementation of particle-scale rotation in the 3-D lattice solid model. Pure Appl. Geophys. 163, 1769–1785 (2006)CrossRefGoogle Scholar
  29. 29.
    Mair K., Abe S.: 3d numerical simulations of fault gouge evolution during shear: grain size reduction and strain localization. Earth Planet. Sci. Lett. 274, 72–81 (2008)CrossRefGoogle Scholar
  30. 30.
    Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  31. 31.
    Aharonov E., Sparks D.: Rigidity phase transition in granular packings. Phys. Rev. E 60, 6890–6896 (1999)CrossRefGoogle Scholar
  32. 32.
    Wang Y.: A new algorithm to model the dynamics of 3-D bonded rigid bodies with rotations. Acta Geotech. 4, 117–127 (2009)CrossRefGoogle Scholar
  33. 33.
    Ruina A.: Slip instability and state variable friction laws. J. Geophys. Res.: Solid Earth 88, 10359–10370 (1983)CrossRefGoogle Scholar
  34. 34.
    Palmer A.C., Rice J.R.: The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. Lond. A 332, 527–548 (1973)CrossRefzbMATHGoogle Scholar
  35. 35.
    Ida Y.: Cohesive force across the tip of a longitudinal-shear crack and griffith’s specific surface energy. J. Geophys. Res. 77, 3796–3805 (1972)CrossRefGoogle Scholar
  36. 36.
    Johnson P., Carpenter B., Knuth M., Kaproth B., Le Bas P.-Y., Daub E., Marone C.: Nonlinear dynamical triggering of slow slip on simulated earthquake faults with implications to earth. J. Geophys. Res. 117, 1–9 (2012)Google Scholar
  37. 37.
    Gomberg J., Johnson P.A.: Dynamic triggering of earthquakes. Nature 437, 830 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • B. Ferdowsi
    • 1
    • 2
    Email author
  • M. Griffa
    • 2
  • R. A. Guyer
    • 3
    • 4
  • P. A. Johnson
    • 3
  • J. Carmeliet
    • 2
    • 5
  1. 1.Department of Civil, Environmental and Geomatic Engineering, Swiss Federal Institute of Technology ZürichZürichSwitzerland
  2. 2.Swiss Federal Laboratories for Materials Science and Technology (Empa)ZürichSwitzerland
  3. 3.Solid Earth Geophysics GroupLos Alamos National LaboratoryLos AlamosUSA
  4. 4.Department of PhysicsUniversity of NevadaRenoUSA
  5. 5.Chair of Building PhysicsSwiss Federal Institute of Technology ZürichZürichSwitzerland

Personalised recommendations