Acta Mechanica

, Volume 225, Issue 11, pp 3115–3121 | Cite as

Stokes flow driven by a Stokeslet in a cone

  • Irina V. Blinova
  • Ksenia N. Kyz’yurova
  • Igor Yu. Popov
Article
  • 144 Downloads

Abstract

We consider an axisymmetric Stokes flow in an infinite right circular cone, which has a source of momentum (a Stokeslet) on its axis. It produces an infinite sequence of eddies in the conical flow region. A boundary problem for a stream function is solved. The picture of the streamlines is obtained. We investigate an eddy structure of the flow. The results can be used for constructing nanoreactors while carrying out chemical reactions in strictly localized nanosized spatial regions.

Keywords

Stokes flow Stokeslet Cone Eddy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li D.: Encyclopedia of Microfluidics and Nanofluidics. Springer, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Rivera J.L., Starr F.W.: Rapid transport of water via carbon nanotube. J.Phys. Chem. C 114, 3737–3742 (2010)CrossRefGoogle Scholar
  3. 3.
    Paul D.R.: Creating new types of carbon-based membranes. Science 335(6067), 411–413 (2012)CrossRefGoogle Scholar
  4. 4.
    Chivilikhin S.A., Gusarov V.V., Popov I.Yu.: Flows in nanostructures: hybrid classical-quantum model. Nanosyst. Phys. Chem. Math. 3(1), 7–26 (2012)Google Scholar
  5. 5.
    Popov I.Yu., Chivilikhin S.A., Gusarov V.V.: Model of fluid flow in nanotube: classical and quantum features. J. Phys. Conf. Ser. 248, 012006/1-8 (2010)CrossRefGoogle Scholar
  6. 6.
    Popov I.Yu.: Statistical derivation of modified hydrodynamic equations for nanotube flows. Phys. Scr. 83, 045601/1-3 (2011)CrossRefGoogle Scholar
  7. 7.
    Happel J., Brenner H.: Low Reynolds Number Hydrodynamics. Prentice-Hall, Englewood Cliffs (1965)Google Scholar
  8. 8.
    Ackerberg R.C.: The viscous incompressible flow inside a cone. J. Fluid Mech. 21(part 1), 47–81 (1965)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Wakiya S.: Axisymmetric flow of a viscous fluid near the vertex of a body. J. Fluid Mech. 78, 737–747 (1976)CrossRefMATHGoogle Scholar
  10. 10.
    Kim M.U.: Slow viscous rotation of a sphere on the axis of a circular cone. J. Korean Phys. Soc. 10(2), 54–58 (1977)Google Scholar
  11. 11.
    Hasimoto H., Sano O.: Stokeslets and eddies in creeping flow. Ann. Rev. Fluid Mech. 12, 335–363 (1980)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sano O., Hasimoto H.: Three-dimensional Moffatt-type eddies due to a Stokeslet in a corner. J.Phys. Soc. Jpn. 48, 1763–1768 (1980)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Liu, C.H., Joseph, D.D.: Stokes flow in conical trenches. SIAM J. Appl. Math. 34, 286–296 (1978)Google Scholar
  14. 14.
    Lecoq N., Masmoudi K., Anthore R., Feullebois F.: Creeping motion of a sphere along the axis of a closed axisymmetric container. J. Fluid Mech. 585, 127–152 (2007)CrossRefMATHGoogle Scholar
  15. 15.
    Malyuga V.S.: Viscous eddies in a circular cone. J. Fluid Mech. 522, 101–116 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hall O., Gilbert A.D., Hills C.P.: Converging flow between coaxial cones. Fluid Dyn. Res. 41, 011402 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Blinova I.V., Kyzyurova K.N., Popov I.Yu.: Nanocones rolling in hydro-thermal medium and flows in conical domains. J. Phys. Conf. Ser. 248, 012013/1-4 (2010)CrossRefGoogle Scholar
  18. 18.
    Blake J.R.: A note on the image system for a Stokeslet in a no-slip boundary. Proc. Camb. Philos. Soc. 70, 303–310 (1971)CrossRefMATHGoogle Scholar
  19. 19.
    Usha R., Nigam S.D.: Flow in a spherical cavity due to Stokeslet. Fluid Dyn. Res. 11, 75–78 (1993)CrossRefGoogle Scholar
  20. 20.
    Liron, N., Mochon, S.: Stokes flow for a Stokeslet between two parallel flat plates. J. Eng. Math. 10, 287–303 (1976)Google Scholar
  21. 21.
    Liron N., Shahar R.: Stokes flow due to a Stokeslet in a pipe. J. Fluid Mech. 86(Part 4), 727–744 (1978)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Blinova I.V.: Model of non-axisymmetric flow in nanotube. Nanosyst. Phys. Chem. Math. 4(3), 320–323 (2013)Google Scholar
  23. 23.
    Pozrikidis C.: Computation of periodic Green’s functions of Stokes flow. J. Eng. Math. 30, 79–96 (1996)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Popov I.Yu.: Operator extensions theory and eddies in creeping flow. Phys. Scr. 47, 682–686 (1993)CrossRefGoogle Scholar
  25. 25.
    Popov I.Yu.: Stokeslet and the operator extensions theory. Rev. Mat. Univ. Compl. Madrid 9(1), 235–258 (1996)MATHGoogle Scholar
  26. 26.
    Gugel Yu.V., Popov I.Yu., Popova S.L.: Hydrotron: creep and slip. Fluid Dyn. Res. 18, 199–210 (1996)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Korn G.A., Korn T.M.: Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York (1968)Google Scholar
  28. 28.
    Batchelor G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  29. 29.
    Lebedev, N.N.: Special Functions and Their Applications, 2nd edn. (M.-L.: GIFML) (1963) (in Russian)Google Scholar
  30. 30.
    Moffatt H.K.: Viscous eddies near a sharp corner. Arch. Mech. Stosow. 2, 365–372 (1964)MathSciNetGoogle Scholar
  31. 31.
    Hackborn W.W.: Asymmetric Stokes flow between parallel planes due to a rotlet. J. Fluid Mech. 218, 531–546 (1990)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Shankar P.N.: Moffatt eddies in the cone. J. Fluid Mech. 539, 113–135 (2005)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Kononova S.V., Korytkova E.N., Romashkova K.A., Kuznetsov Yu.P., Gofman I.V., Svetlichnyi V.M., Gusarov V.V.: Nanocomposite on the basis of amide imide resin with hydrosilicate nanoparticles of different morphology. J. Appl. Chem. 80, 2064–2070 (2007)Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Irina V. Blinova
    • 1
  • Ksenia N. Kyz’yurova
    • 2
  • Igor Yu. Popov
    • 1
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  2. 2.Department of Statistical ScienceDuke UniversityDurhamUSA

Personalised recommendations