Acta Mechanica

, Volume 225, Issue 7, pp 2043–2057 | Cite as

Effect of fabric method on instability behavior of granular material

  • Noureddine Della
  • Mostefa Belkhatir
  • Ahmed Arab
  • Jean Canou
  • Jean-Claude Dupla
Article

Abstract

It is well known that the specimen preparation method and the resulting sand fabric significantly affect sand behavior and sand liquefaction resistance. In many cases, the fabric and behavior of reconstituted sand samples do not represent those of in-situ deposits. Therefore, understanding the influence of specimen preparation and sand fabric on its behavior, particularly at the critical state, is important for relating the behavior of laboratory reconstituted specimens to in-situ soil response. In this study, the effect of sand fabric and specimen preparation method on the shearing behavior of sand is studied using triaxial shear tests. Dry funnel pluviation (DFP) and wet tamping (WT) are used to prepare the specimens. The results from instability lines and stress–strain curves indicate that the liquefaction resistance of specimens prepared with the DFP method is more than specimens reconstituted by the WT method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vaid P.Y., Sivathayalan S., Stedman D.: Influence of specimen reconstituting method on the undrained response of sand. Geotech. Test. J. 22, 187–195 (1999)CrossRefGoogle Scholar
  2. 2.
    Ishihara K.: Liquefaction and flow failure during earthquakes. Geotechnique 43, 351–415 (1993)CrossRefGoogle Scholar
  3. 3.
    Wood, F.M., Yamamuro, J.A.: The effect of depositional method on the liquefaction behavior of silty sand. In: Proceedings 13th ASCE Engineering Mechanics Conference. The Johns Hopkins University, Baltimore, MD; CD-ROM (1999)Google Scholar
  4. 4.
    Benahmed N., Canou J.J., Dupla J.C.: Structure initiale et propriétés de liquéfaction statique d’un sable. Comptes Rendus Mécanique 332, 887–894 (2004)CrossRefMATHGoogle Scholar
  5. 5.
    Wood F.M., Yamamuro J.A., Lade P.V.: Effect of depositional method on the undrained response of silty sand. Can. Geotech. J. 45, 1525–1537 (2008)CrossRefGoogle Scholar
  6. 6.
    Yamamuro J.A., Wood F.M., Lade P.V.: Effect of depositional method on the microstructure of silty sand. Can. Geotech. J. 45, 1538–1555 (2008)CrossRefGoogle Scholar
  7. 7.
    Della N., Arab A., Belkhatir M.: Effect of confining pressure and depositional method on the undrained response of medium dense sand. J. Iber. Geol. 37, 37–44 (2011)CrossRefGoogle Scholar
  8. 8.
    Kuerbis R., Vaid Y.P.: Sand sample preparation—the slurry deposition method. Soils Found 28, 107–118 (1988)CrossRefGoogle Scholar
  9. 9.
    Kramer S.L., Seed H.B.: Initiation of soil liquefaction under static loading conditions. J. Geotech. Eng. 114, 412–430 (1988)CrossRefGoogle Scholar
  10. 10.
    Papadimitriou A.G., Dafalias Y.F., Yoshimine M.: Plasticity modeling of the effect of sample preparation method on sand response. Soils Found. 45, 109–123 (2005)Google Scholar
  11. 11.
    Wood, F.M.: Influence of specimen reconstitution method on the undrained response and microstructure of silty sand. Thesis completed in partial fulfillment of the requirements for the degree of Master of Science, Department of Civil and Environmental Engineering, Clarkson University (1999)Google Scholar
  12. 12.
    Yamamuro J.A., Lade P.V.: Static liquefaction of very loose sands. Can. Geotech. J. 34, 905–917 (1997)CrossRefGoogle Scholar
  13. 13.
    Della N., Arab A., Belkhatir M., Missoum H.: Identification of the behaviour of the Chlef sand to static liquefaction. C. R. Mechanique 337, 282–290 (2009)CrossRefGoogle Scholar
  14. 14.
    Yoshimine M., Robertson P.K., Wride C.E.: Undrained shear strength of clean sands to trigger flow liquefaction. Can. Geotech. J. 36, 891–906 (1999)CrossRefGoogle Scholar
  15. 15.
    Castro, G.: Liquefaction of sands. Ph.D. thesis, Harvard University, Cambridge, MA (1969)Google Scholar
  16. 16.
    Kramer S.L.: Geothechnical Earthquake Engineering, pp. 653. Prentice Hall, NJ (1996)Google Scholar
  17. 17.
    Leong W.K., Chu J., Teh C.I.: Liquefaction and instability of a granular fill material. Geotech. Test. J 23, 178–192 (2000)CrossRefGoogle Scholar
  18. 18.
    Lade, P.V.: Instability of granular materials. In: Lade, P.V., Yamamuro, J.A. (eds.) Physics and mechanics of soil liquefaction, pp. 3–16. Balkema, Rotterdam (1999)Google Scholar
  19. 19.
    National Research Council: Liquefaction of soils during earthquakes. National Academy Press, Washington, DC (1985)Google Scholar
  20. 20.
    Lade P.V.: Static instability and liquefaction of loose sandy slopes. J Geotech Eng 118, 51–71 (1992)CrossRefGoogle Scholar
  21. 21.
    Lade P.V.: Initiation of static instability in the submarine Nerlerk berm. Can Geotech J 30, 895–904 (1993)CrossRefGoogle Scholar
  22. 22.
    Olson S.M., Stark T.D., Walton W.H., Castro G.: 1907 Static liquefaction flow failure of the north dike of wachusett dam. J Geotech Geoenviron Eng 126, 1184–1193 (2000)CrossRefGoogle Scholar
  23. 23.
    Chu J., Leong W.K.: Effects of lines on instability behaviour of loose sand. Geotechnique 52, 751–755 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Noureddine Della
    • 1
  • Mostefa Belkhatir
    • 1
  • Ahmed Arab
    • 1
  • Jean Canou
    • 2
  • Jean-Claude Dupla
    • 2
  1. 1.Laboratory of Materials Sciences and Environment (LMSE), Civil Engineering DepartmentUniversity Hassiba Benbouali of ChlefChlefAlgeria
  2. 2.Laboratoire Navier-géotechnique (CERMES)Ecole Nationale des Ponts et Chaussées de Paris (ENPC)Marne-la-Vallée Cedex 2France

Personalised recommendations