Acta Mechanica

, Volume 224, Issue 10, pp 2415–2424 | Cite as

Direct simulations of aggregates in homogeneous isotropic turbulence

Article

Abstract

We study aggregation in turbulent flow by means of particle-resolved, direct numerical simulations. Mono-sized spheres with an attractive square-well potential are released in homogeneous, isotropic turbulence generated through linear forcing. Typical cases have a solids volume fraction of 0.08 and a ratio of the Kolmogorov scale over the primary sphere radius of O(0.1). The latter implies that the flow around the primary spheres is inhomogeneous. The simulations show the continuous formation and breakage of aggregates as a result of the turbulence and the attractive potential. The average size of the aggregates is a pronounced function of the strengths of turbulence and interaction potential. Fractal dimensions of the aggregates are in the range 1.4–1.8 for the cases studied.

Keywords

Fractal Dimension Direct Numerical Simulation Primary Particle Aggregate Size Isotropic Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramkrishna D.: Population Balances—Theory and Applications to Particulate Systems in Engineering. Academic Press, London (2000)Google Scholar
  2. 2.
    Marchisio D.L., Pikturna J.T., Fox R.O., Vigil D., Barresi A.A.: Quadrature method of moments for population balances. AIChE J. 49, 1266–1276 (2003)CrossRefGoogle Scholar
  3. 3.
    Aamir E., Nagy Z.K., Rielly C.D., Kleinert T., Judat B.: Combined quadrature method of moments and method of characteristics approach for efficient solution of population balance models for dynamic modeling and crystal size distribution control of crystallization processes. Ind. Eng. Chem. Res. 48, 8575–8584 (2009)CrossRefGoogle Scholar
  4. 4.
    Vigil R.D.: On equilibrium solutions of aggregation–fragmentation problems. J. Colloid Interface Sci. 336, 642–647 (2009)CrossRefGoogle Scholar
  5. 5.
    Eggersdorfer M.L., Kadau D., Herrmann H.J., Pratsinis S.E.: Fragmentation and restructuring of soft-agglomerates under shear. J. Colloid Interface Sci. 342, 261–268 (2010)CrossRefGoogle Scholar
  6. 6.
    Bäbler M.U., Morbidelli M., Bałdyga J.: Modelling the breakup of solid aggregates in turbulent flows. J. Fluid Mech. 612, 261–289 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Zaccone A., Soos M., Lattuada M., Wu H., Bäbler M.U., Morbidelli M.: Breakup of dense colloidal aggregates under hydrodynamic stresses. Phys. Rev. E 79, 061401 (2009)CrossRefGoogle Scholar
  8. 8.
    Soos M., Ehrl L., Bäbler M.U., Morbidelli M.: Aggregate breakup in a contracting nozzle. Langmuir 26, 10–18 (2010)CrossRefGoogle Scholar
  9. 9.
    Higashitani K., Iimura K., Sanda H.: Simulation of deformation and breakup of large aggregates in flows of viscous fluids. Chem. Eng. Sci. 56, 2927–2938 (2001)CrossRefGoogle Scholar
  10. 10.
    Becker V., Schlauch E., Behr M., Briesen H.: Restructuring of colloidal aggregates in shear flows and limitations of the free-draining approximation. J. Colloid Interface Sci. 339, 362–372 (2009)CrossRefGoogle Scholar
  11. 11.
    Harshe Y.M., Lattuada M., Soos M.: Experimental and modeling study of breakage and restructuring of open and dense colloidal aggregates. Langmuir 27, 5739–5752 (2011)CrossRefGoogle Scholar
  12. 12.
    Harada S., Tanaka R., Nogami H., Sawada M.: Dependence of fragmentation behavior of colloidal aggregates on their fractal structure. J. Colloid Interface Sci. 301, 123–129 (2006)CrossRefGoogle Scholar
  13. 13.
    Derksen J.J.: Direct numerical simulations of aggregation of monosized spherical particles in homogeneous isotropic turbulence. AIChE J. 58, 2589–2600 (2012)CrossRefGoogle Scholar
  14. 14.
    Rosales, C., Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17, 095106-1–095106-8 (2005)Google Scholar
  15. 15.
    Smith S.W., Hall C.K., Freeman D.B.: Molecular dynamics for polymeric fluids using discontinuous potentials. J. Comput. Phys. 134, 16–30 (1997)CrossRefMATHGoogle Scholar
  16. 16.
    Chen S., Doolen G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1989)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Succi S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press, Oxford (2001)MATHGoogle Scholar
  18. 18.
    Goldstein D., Handler R., Sirovich L.: Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105, 354–366 (1993)CrossRefMATHGoogle Scholar
  19. 19.
    Derksen J., Vanden Akker H.E.A.: Large-eddy simulations on the flow driven by a Rushton turbine. AIChE J. 45, 209–221 (1999)CrossRefGoogle Scholar
  20. 20.
    Yamamoto Y., Potthoff M., Tanaka T., Kajishima T., Tsuji Y.: Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303–334 (2001)CrossRefMATHGoogle Scholar
  21. 21.
    Somers J.A.: Direct simulation of fluid flow with cellular automata and the Lattice–Boltzmann equation. Appl. Sci. Res. 51, 127–133 (1993)CrossRefMATHGoogle Scholar
  22. 22.
    Derksen J.J., Sundaresan S.: Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds. J. Fluid Mech. 587, 303–336 (2007)CrossRefMATHGoogle Scholar
  23. 23.
    Ten Cate A., Nieuwstad C.H., Derksen J.J., Vanden Akker H.E.A.: PIV experiments and Lattice–Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 14, 4012–4025 (2002)CrossRefGoogle Scholar
  24. 24.
    Kim S., Karrila S.J.: Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann, Boston (1991)Google Scholar
  25. 25.
    Witten T.A. Jr., Sander L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)CrossRefGoogle Scholar
  26. 26.
    Ehrl L., Soos M., Wu H., Morbidelli M.: Effect of flow field heterogeneity in coagulators on aggregate size and structure. AIChE J. 56, 2573–2587 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations