Acta Mechanica

, Volume 224, Issue 10, pp 2375–2384 | Cite as

On inertial effects of long fibers in wall turbulence: fiber orientation and fiber stresses

  • L. H. Zhao
  • H. I. Andersson
  • J. J. J. Gillissen
Article

Abstract

Inertia effects of large-aspect-ratio fibers have been investigated in wall turbulence. The turbulent flow field in a plane channel was obtained from a direct numerical simulation. The translational and rotational motion of the rigid fibers were obtained by a Lagrangian approach, first for inertial fibers with Stokes number St = 10, 1.0 and 0.1 and thereafter for massless fibers, which correspond to St = 0. All simulations were one-way coupled. The fiber orientation statistics and the normal components of the fiber stress tensor turned out to be almost independent of the fiber inertia all the way from the channel wall to the center for St ≤  1.0. This observation suggested that fiber inertia plays a negligible role for Stokes number below unity and the gap between inertial fibers and massless fibers has been bridged. The massless particle approach appears as a viable alternative to mimic the orientation and stress tensor of fibers with only modest inertia.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pécseli H.L., Trulsen J., Fiksen Ø.: Predator–prey encounter and capture rates for plankton in turbulent environments. Progr. Oceanogr. 101, 14–32 (2012)CrossRefGoogle Scholar
  2. 2.
    Lundell F., Söderberg L.D., Alfredsson P.H.: Fluid mechanics of papermaking. Annu. Rev. Fluid Mech. 43, 195–217 (2011)CrossRefGoogle Scholar
  3. 3.
    Jeffery G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. Lond. A 102, 161–179 (1922)CrossRefGoogle Scholar
  4. 4.
    Brenner H.: The Stokes resistance of an arbitrary particle. Chem. Eng. Sci. 18, 1–25 (1963)CrossRefGoogle Scholar
  5. 5.
    Brenner H.: The Stokes resistance of an arbitrary particle—II: an extension. Chem. Eng. Sci. 19, 599–629 (1964)CrossRefGoogle Scholar
  6. 6.
    Brenner H.: The Stokes resistance of an arbitrary particle—III: shear fields. Chem. Eng. Sci. 19, 631–651 (1964)CrossRefGoogle Scholar
  7. 7.
    Brenner H.: The Stokes resistance of an arbitrary particle—IV: arbitrary fields of flow. Chem. Eng. Sci. 19, 703–727 (1964)CrossRefGoogle Scholar
  8. 8.
    Brenner H.: The Stokes resistance of an arbitrary particle—V: symbolic operator representation of intrinsic resistance. Chem. Eng. Sci. 21, 97–109 (1966)CrossRefGoogle Scholar
  9. 9.
    Batchelor G.K.: The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545–570 (1970)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Batchelor G.K.: The stress generated in a non-dilute suspension of elongated particles by pure straining motion. J. Fluid Mech. 46, 813–829 (1971)CrossRefMATHGoogle Scholar
  11. 11.
    Zhang H., Ahmadi G., Fan F.G., McLaughlin J.B.: Ellipsoidal particles transport and deposition in turbulent channel flows. Int. J. Multiph. Flow 27, 971–1009 (2001)CrossRefMATHGoogle Scholar
  12. 12.
    Mortensen P.H., Andersson H.I., Gillissen J.J.J., Boersma B.J.: Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302 (2008)CrossRefGoogle Scholar
  13. 13.
    Mortensen P.H., Andersson H.I., Gillissen J.J.J., Boersma B.J.: On the orientation of ellipsoidal particles in a turbulent shear flow. Int. J. Multiph. Flow 34, 678–683 (2008)CrossRefGoogle Scholar
  14. 14.
    Marchioli C., Fantoni M., Soldati A.: Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22, 033301 (2010)CrossRefGoogle Scholar
  15. 15.
    Andersson H.I., Zhao L., Barri M.: Torque–coupling and particle–turbulence interactions. J. Fluid Mech. 696, 319–329 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Manhart M.: Rheology of suspensions of rigid-rod like particles in turbulent channel flow. J. Non-Newton. Fluid Mech. 112, 269–293 (2003)CrossRefMATHGoogle Scholar
  17. 17.
    Paschkewitz J.S., Dubief Y., Dimitropoulus C.D., Shaqfeh E.S.G., Moin P.: Numerical simulation of turbulent drag reduction using rigid fibers. J. Fluid Mech. 518, 281–317 (2004)CrossRefMATHGoogle Scholar
  18. 18.
    Paschkewitz J.S., Dimitropoulus C.D., Hou Y.X., Somandepalli V.S.R., Mungal M.G., Shaqfeh E.S.G., Moin P.: An experimental and numerical investigation of drag reduction in turbulent boundary layer using a rigid rodlike polymer. Phys. Fluids 17, 085101 (2005)CrossRefGoogle Scholar
  19. 19.
    Gillissen J.J.J., Boersma B.J., Mortensen P.H., Andersson H.I.: On the performance of the moment approximation for the numerical computation of fiber stress in turbulent channel flow. Phys. Fluids 19, 035102 (2007)CrossRefGoogle Scholar
  20. 20.
    Gillissen J.J.J., Boersma B.J., Mortensen P.H., Andersson H.I.: The stress generated by non-Brownian fibers in turbulent channel flow simulations. Phys. Fluids 19, 115107 (2007)CrossRefGoogle Scholar
  21. 21.
    Shapiro M., Goldenberg M.: Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aerosol Sci. 24, 65–87 (1993)CrossRefGoogle Scholar
  22. 22.
    Goldstein H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980)MATHGoogle Scholar
  23. 23.
    Doi M., Edwards S.F.: The Theory of Polymer Dynamics. Clarendon, Oxford (1986)Google Scholar
  24. 24.
    Marchioli C., Soldati A.: Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283–315 (2002)CrossRefMATHGoogle Scholar
  25. 25.
    Andersson, H.I., Mortensen, P.H., Gillissen, J.J.J., Zhao, L., Boersma, B.J.: How to discriminate between light and heavy particles in turbulence? In: Eckhardt, B. (ed.) Advances in Turbulence XII, Springer Proceedings in Physics, vol. 132, pp. 335–338. Springer, Berlin (2009)Google Scholar
  26. 26.
    Elghobashi, S.: An updated classification map of particle-laden turbulent flows. In: IUTAM Symposium on Computational Approaches to Multiphase Flow, pp. 3–10. Springer, Berlin (2006)Google Scholar
  27. 27.
    Lundell F., Carlsson A.: Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. Phys. Rev. E 81, 016323 (2010)CrossRefGoogle Scholar
  28. 28.
    Nilsen C., Andersson H.I.: Chaotic rotation of inertial spheroids in oscillating shear flow. Phys. Fluids 25, 013303 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • L. H. Zhao
    • 1
  • H. I. Andersson
    • 1
  • J. J. J. Gillissen
    • 2
  1. 1.Department of Energy and Process EngineeringThe Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Chemical EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations