A novel Quaternion integration approach for describing the behaviour of non-spherical particles


There are three main frameworks to describe the orientation and rotation of non-spherical particles: Euler angles, rotation matrices and unit Quaternions. Of these methods, the latter seems the most attractive for describing the behaviour of non-spherical particles. However, there are a number of drawbacks when using unit Quaternions: the necessity of applying rotation matrices in conjunction to facilitate the transformation from body space to world space, and the algorithm integrating the Quaternion should inherently conserve the length of the Quaternion. Both drawbacks are addressed in this paper. The present paper derives a new framework to transform vectors and tensors by unit Quaternions, and the requirement of explicitly using rotation matrices is removed altogether. This means that the algorithm derived in this paper can describe the rotation of a non-spherical particle with four parameters only. Moreover, this paper introduces a novel corrector-predictor method to integrate unit Quaternions, which inherently conserves the length of the Quaternion. The novel framework and method are compared to a number of other methods put forward in the literature. All the integration methods are discussed, scrutinised and compared to each other by comparing the results of four test cases, involving a single falling particle, nine falling and interacting particles, a 2D prescribed torque on a sphere and a 3D prescribed torque on a non-spherical particle. Moreover, a convergence study is presented, comparing the rate of convergence of the various methods. All the test cases show a significant improvement of the new framework put forward in this paper over existing algorithms. Moreover, the new method requires less computational memory and fewer operations, due to the complete omission of the rotation matrix in the algorithm.


  1. 1

    Allen M.P., Tildesley D.J.: The Computer Simulation of Liquids, Vol. 42. Oxford University Press, Oxford (1989)

    Google Scholar 

  2. 2

    Altmann S.L.: Rotations, Quaternions, and Double Groups, Vol. 3. Clarendon Press Oxford, England (1986)

    Google Scholar 

  3. 3

    Arribas M., Elipe A., Palacios M.: Quaternions and the rotation of a rigid body. Celestial Mech. Dyn. Astr. 96(3-4), 239–251 (2006). doi:10.1007/s10569-006-9037-6

    MathSciNet  Article  MATH  Google Scholar 

  4. 4

    Baraff, D.: An Introduction to Physically Based Modeling: Rigid Body Simulation I–Unconstrained Rigid Body Dynamics. SIGGRAPH Course Notes (1997)

  5. 5

    Betsch P., Siebert R.: Rigid body dynamics in terms of Quaternions: Hamiltonian formulation and conserving numerical integration. Int. J. Numer. Methods Eng. 79(4), 444–473 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6

    Betsch P., Steinmann P.: Constrained integration of rigid body dynamics. Comput. Methods Appl. Mech. Eng. 191(3–5), 467–488 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7

    Celledoni E., Fassò F., Säfström N., Zanna A.: The exact computation of the free rigid body motion and its use in splitting methods. SIAM J. Sci. Comput. 30, 2084–2112 (2008)

    MathSciNet  Article  Google Scholar 

  8. 8

    Celledoni E., Säfström N.: Efficient time-symmetric simulation of torqued rigid bodies using Jacobi elliptic functions. J. Phys. A. Math. General 39(19), 5463–5478 (2006)

    Article  MATH  Google Scholar 

  9. 9

    Chou J.: Quaternion kinematic and dynamic differential equations. IEEE Trans. Robot. Autom. 8(1), 53–64 (1992)

    Article  Google Scholar 

  10. 10

    Cundall P., Strack O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  11. 11

    Delaney G.W., Cleary P.: The packing properties of superellipsoids. EPL (Europhys. Lett.) 89(3), 34,002 (2010)

    Article  Google Scholar 

  12. 12

    Diebel, J.: Representing attitude: Euler angles, unit Quaternions, and rotation vectors. Tech. rep., Stanford University, California, USA (2006)

  13. 13

    Eberly, D.: Quaternion algebra and calculus. Magic Software, Inc. (2002)

  14. 14

    Eberly, D.: Rotation representations and performance issues. Magic Software, Inc. (2002)

  15. 15

    Evans D., Murad S.: Singularity free algorithm for molecular dynamics simulation of rigid polyatomics. Mol. Phys. 34(2), 327–331 (1977)

    Article  Google Scholar 

  16. 16

    Grassia F.S.: Practical parameterization of rotations using the exponential map. J. Graphics Tools 3, 1–13 (1998)

    Article  Google Scholar 

  17. 17

    Gsponer, A., Hurni, J.P.: The physical heritage of Sir W.R. Hamilton. In: The Mathematical Heritage of Sir William Rowan Hamilton—commemorating the sesquicentennial of the invention of Quaternions, pp. 1–37. Trinity College, Dublin (1993)

  18. 18

    Hairer E., Vilmart G.: Preprocessed discrete Moser Veselov algorithm for the full dynamics of a rigid body. J. Phys. A Math. General 39(42), 13,225–13,235 (2006)

    MathSciNet  Article  Google Scholar 

  19. 19

    Hamilton W.R.: On Quaternions; or on a new system of imaginaries in Algebra. Lond. Edinburgh Dublin Philos. Mag. J. Sci. (3d Series) 15-36, 1–306 (1844)

    Google Scholar 

  20. 20

    Hoffmann, G.: Application of Quaternions. Tech. Rep. February 1978, Technische Universität Braunschweig (1978)

  21. 21

    Hoover W.G.: Lecture Notes in Physics–Molecular Dynamics. Springer, US (1986)

    Google Scholar 

  22. 22

    Ibanez, L.: Tutorial on Quaternions Part I. Insight Segmentation and Registration Toolkit (ITK) (2001)

  23. 23

    Karney C.F.F.: Quaternions in molecular modeling. J. Mol. Graph. Model. 25(5), 595–604 (2007)

    Article  Google Scholar 

  24. 24

    Kleppmann, M.: Simulation of colliding constrained rigid bodies. Tech. Rep. 683, University of Cambridge, UCAM-CL-TR-683, ISSN 1476-2986 (2007)

  25. 25

    Kosenko I.: Integration of the equations of a rotational motion of a rigid body in quaternion algebra. The Euler case. J. Appl. Math. Mech. 62(2), 193–200 (1998)

    MathSciNet  Article  Google Scholar 

  26. 26

    Kuipers J.B.: Quaternions and rotation sequences. Mater. Sci. Eng. A 271(d), 322–333 (1999)

    Google Scholar 

  27. 27

    Langston P.A., Al-Awamleh M.A., Fraige F.Y., Asmar B.N.: Distinct element modelling of non-spherical frictionless particle flow. Chem. Eng. Sci. 59(2), 425–435 (2004)

    Article  Google Scholar 

  28. 28

    Latham, J., Munjiza, A.: The modelling of particle systems with real shapes. Philos. Trans. Roy. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 362(1822), 1953 (2004)

    Google Scholar 

  29. 29

    Mclachlan, R.I., Zanna, A.: The discrete Moser-Veselov algorithm for the free rigid body, revisited. Tech. rep., University of Bergen (2003)

  30. 30

    Mortensen P., Andersson H., Gillissen J., Boersma B.J.: Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20(9), 093,302 (2008)

    Article  Google Scholar 

  31. 31

    Moser J., Veselov A.P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys. 139(2), 217–243 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32

    Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in C, 2nd ed. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  33. 33

    Qi D.: Direct simulations of flexible cylindrical fiber suspensions in finite Reynolds number flows. J. Chem. Phys. 125(11), 114,901 (2006)

    Article  Google Scholar 

  34. 34

    Sabatini A.M.: Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis. Med. Biol. Eng. Comput. 43(1), 94–101 (2005)

    Article  Google Scholar 

  35. 35

    Walton, O.R., Braun, R.L.: Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters. DOE/NSF Workshop on Flow of Particulates (1993)

  36. 36

    Whitmore, S.A., Hughes, L.: Calif: Closed-form Integrator for the Quaternion (Euler Angle) Kinematics Equations, US patent (2000)

Download references

Author information



Corresponding author

Correspondence to B. G. M. van Wachem.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Reprints and Permissions

About this article

Cite this article

Zhao, F., van Wachem, B.G.M. A novel Quaternion integration approach for describing the behaviour of non-spherical particles. Acta Mech 224, 3091–3109 (2013). https://doi.org/10.1007/s00707-013-0914-2

Download citation


  • Rotation Matrix
  • Euler Angle
  • Time Level
  • Euler Method
  • Rotation Operator