Acta Mechanica

, Volume 224, Issue 7, pp 1527–1540 | Cite as

Yield criteria of hexagonal symmetry in the π-plane

  • V. A. KolupaevEmail author
  • M. -H. Yu
  • H. Altenbach


The theory of plasticity operates with different yield criteria of incompressible behavior for isotropic materials. Mostly known are the criteria of Tresca, Schmidt-Ishlinsky and von Mises. The first two criteria have a hexagonal symmetry, and the criterion of von Mises has a rotational symmetry in the π-plane. All these criteria do not distinguish between tension and compression (no strength differential effect), but numerous problems are treated in the engineering practice using these criteria. Within this paper, the yield criteria with hexagonal symmetry for isotropic incompressible materials are compared. For this purpose, their geometries in the π-plane will be presented in polar coordinates. The radii at the angles of 15 and 30 will be related to the radius at 0. Based on these two relations, well-known criteria will be shown in one diagram. The extreme shapes of the yield surfaces are restricted by two criteria: the unified yield criterion (UYC) and the multiplicative ansatz criterion (MAC). The examinations of the UYC and MAC depict a linear combination of these extreme yield surfaces. The resulting criterion with two parameters describes all possible convex forms of hexagonal symmetry. On the other hand, this criterion has one disadvantage: It is not possible to solve explicitly the equation for the equivalent stress. Other known criteria (Sokolovsky, Ishlinsky-Ivlev, Dodd-Naruse, Drucker) are depicted in the proposed diagram and compared with the above mentioned criteria. Further criteria are derived from the consideration of solids with orthogonal symmetry planes in the shear stress space. New criteria are introduced for practical applications. The constraints of convexity are established for them. The proposed consideration of the yield criteria simplifies the selection of a proper criterion. The extreme solutions for the analysis of construction parts can be found using these criteria.


Yield Surface Yield Criterion Hexagonal Symmetry Strength Theory Strength Differential Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam P., Wyss A.: Platonische und archimedische Körper, ihre Sternformen und polaren Gebilde. Haupt Verlag, Bern (1994)zbMATHGoogle Scholar
  2. 2.
    Altenbach H., Altenbach J., Zolochevsky A.: Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, Stuttgart (1995)Google Scholar
  3. 3.
    Altenbach H., Bolchoun A., Kolupaev V.A.: Phenomenological yield and failure criteria. In: Altenbach, H., Öchsner, A. (eds) Plasticity of Pressure–Sensitive Materials, ASM, Heidelberg (2012)Google Scholar
  4. 4.
    Annin B.D.: Theory of ideal plasticity with a singular yield surface. J. of Applied Mechanics and Technical Physics 40(2), 347–353 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Backhaus G.: Deformationsgesetze. Akademie-Verlag, Berlin (1983)Google Scholar
  6. 6.
    Belyaev N.M.: Strength of Materials. Mir Publ., Moscow (1979)Google Scholar
  7. 7.
    Billington E.W.: Introduction to the Mechanics and Physics of Solids. Adam Hilger Ltd., Bristol (1986)zbMATHGoogle Scholar
  8. 8.
    Bolchoun A., Kolupaev V.A., Altenbach H.: Convex and non-convex flow surfaces (in German: Konvexe und nichtkonvexe Fließflächen). Forschung im Ingenieurwesen 75(2), 73–92 (2011)CrossRefGoogle Scholar
  9. 9.
    Burzyński W.: Über die Anstrengungshypothesen. Schweizerische Bauzeitung 94(21), 259–262 (1929)Google Scholar
  10. 10.
    Burzyński W.: Über die Anstrengungshypothesen. Schweizerische Bauzeitung 95(7), 87–88 (1929)Google Scholar
  11. 11.
    Burzyński, W.: Selected passages from Włodzimierz Burzyński’s doctoral dissertation “Study on material effort hypotheses” printed in Polish by the Academy of Technical Sciences, Lwów, 1928, 1–192. Engineering Transactions of the Polish Academy of Sciences, 57, 3–4, 127–157 (2009)Google Scholar
  12. 12.
    Chen W.F., Zhang H.: Structural Plasticity—Theory, Problems, and CAE Software. Springer, New York (1991)Google Scholar
  13. 13.
    Davis E.A.: The Bailey flow rule and associated yield surface. J. of Applied Mechanics 28(2), 310 (1961)CrossRefGoogle Scholar
  14. 14.
    Dodd B., Naruse K.: Limitation on isotropic yield criteria. Int. J. Mech. Sci. 31(7), 511–519 (1989)CrossRefzbMATHGoogle Scholar
  15. 15.
    Drucker, D.C.: Stress-strain relations for strain hardening materials: Discussion and proposed experiments. In: Reissner E., Prager W., Stoker R.R. (eds.) Brown University. Proceedings of the First Symposium in Applied Mathematics, vol. 1, pp. 181–187. American Mathematical Society, New York (1949)Google Scholar
  16. 16.
    Hershey A.V.: The plasticity of an isotropic aggregate of anisotropic face-centered cubic crytals. J. of Applied Mechanics, Transactions of the ASME 21(3), 241–249 (1954)zbMATHGoogle Scholar
  17. 17.
    Hill R.: On the inhomogeneous deformation of a plastic lamina in a compression test. Philosophical Magazine, Series 7(41(319), 733–744 (1950)Google Scholar
  18. 18.
    Hosford W.F.: A generalized isotropic yield criterion. J. of Applied Mechanics, Transactions of the ASME 39(6), 607–609 (1972)CrossRefGoogle Scholar
  19. 19.
    Hosford, W.F.: On yield loci of anisotropic cubic metals. In: 7th North American Metalworking Research, SME, Proceedings NAMRC, No. 7, pp. 191–196, Dearborn (1979)Google Scholar
  20. 20.
    Ishlinsky A.Y.: Hypothesis of strength of shape change (in russ.: Gipoteza prochnosti formoizmenenija). Uchebnye Zapiski Moskovskogo Universiteta, Mekhanika 46, 104–114 (1940)Google Scholar
  21. 21.
    Ishlinsky A.Y., Ivlev D.D.: Mathematical Theory of Plasticity (in Russ.: Matematicheskaja teorija plastichnosti). Fizmatlit, Moscow (2003)Google Scholar
  22. 22.
    Ismar H., Mahrenholz O.: Technische Plastomechanik. Vieweg, Braunschweig (1979)CrossRefGoogle Scholar
  23. 23.
    Ivlev D.D.: On the development of a theory of ideal plasticity (in Russ.: K postroeniju teorii ideal’noj plastichnosti). Journal of Applied Mathematics and Mechanics 22(6), 1231–1239 (1958)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ivlev, D.D.: On extremal properties of the yield criteria (in Russ.: Ob ekstremal’nych svojstvach uslovij plastichnosti). J. Appl. Math. Mech. (5), 951–955 (1960)Google Scholar
  25. 25.
    Ivlev D.D.: Theory of Ideal Plasticity (in Russ.: Teorija idealnoj plastichnisti). Nauka, Moscow (1966)Google Scholar
  26. 26.
    Ivlev, D.D.: Theory of limit state and ideal plasticity (in Russ.: Teorija predel’nogo sostojanija i ideal’noj plastichnosti). Voronezhskij Gosudarstvennyj Universitet, Voronezh (2005)Google Scholar
  27. 27.
    Jones R.M.: Deformation Theory of Plasticity. Bull Ridge Publ., Blacksburg (2009)Google Scholar
  28. 28.
    Kolosov G.V.: On the surfaces showing the distribution of the shear stresses in a point of a continuous deformable body (in Russ.: O poverchnostjach demonstrirujushhich raspredelenije srezyvajushhich usilij v tochke sploshnogo deformiruemogo tela). Prikladnya Matematika i Mekhanika 1(1), 125–126 (1933)MathSciNetGoogle Scholar
  29. 29.
    Kolupaev, V.A.: 3D-Creep Behaviour of Parts Made of Non-reinforced Thermoplastics (in German: Dreidimensionales Kriechverhalten von Bauteilen aus unverstärkten Thermoplasten). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (2006)Google Scholar
  30. 30.
    Kolupaev, V.A., Altenbach, H.: Application of the generalized model of Yu to plastics (in German: Anwendung der unified strength theory (UST) von Mao-Hong Yu auf unverstärkte Kunststoffe. In: Grellmann W. (eds.) 12. Tagung Deformations- und Bruchverhalten von Kunststoffen. Martin-Luther-Universität Halle-Wittenberg, Merseburg, pp. 320–339 (2009)Google Scholar
  31. 31.
    Kolupaev V.A., Altenbach H.: Considerations on the unified strength theory due to Mao-Hong Yu (in German: Einige Überlegungen zur Unified Strength Theory von Mao-Hong Yu). Forschung im Ingenieurwesen 74(3), 135–166 (2010)CrossRefGoogle Scholar
  32. 32.
    Kolupaev V.A., Bolchoun A.: Combined yield and fracture criteria (in German: Kombinierte Fließ- und Grenzbedingungen). Forschung im Ingenieurwesen 72(4), 209–232 (2008)CrossRefGoogle Scholar
  33. 33.
    Kolupaev, V.A., Bolchoun, A.: Hard foams: Reliable description of strength properties (in German: Harte Schäume: zuverlässige Beschreibung von Festigkeitseigenschaften). In: Grellmann W. (eds.) 12. Tagung Deformations- und Bruchverhalten von Kunststoffen. Martin-Luther-Universität Halle-Wittenberg, Merseburg, pp. 73–87 (2009)Google Scholar
  34. 34.
    Kolupaev, V.A., Bolchoun, A. Altenbach, H.: New Trends in Application of Strength Hypotheses (in German: Aktuelle Trends beim Einsatz von Festigkeitshypothesen) Konstruktion, 5, 59–66 (2009)Google Scholar
  35. 35.
    Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Unified representation and evaluation of the strength hypotheses. In: Elboujdaini M., Tyson B., Patnaik P. (eds.) 12th International Conference on Fracture ICF 12, July 12–17, number 10 p. Ottawa (2009)Google Scholar
  36. 36.
    Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Geometrical-mechanical model applied to PVC-foams. In: Radusch H.J., Fiedler L. (eds.) 14. International Scientific Conference on Polymeric Materials P. 2010, 15.–17. September, number 31 p. Halle (Saale) (2010)Google Scholar
  37. 37.
    Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Objective functions for evaluation of 3d-failure. In: Kowalczyk, P., (eds.) 37th Solid Mechanics Conference, Solmech-2010, September 6–10, pages 96–97. Warsaw (2010)Google Scholar
  38. 38.
    Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Testing of multi-axial strength behavior of hard foams. In: Brémand F., (eds.) ICEM 14—14th International Conference on Experimental Mechanics, 4-9 July, EPJ Web of Conferences 6, 16003 (2010), no. 8 p. Poitiers, France (2010)Google Scholar
  39. 39.
    Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Strength hypothesis applied to hard foams. Appl. Mech. Mater. 70(Advances in Experimental Mechanics VIII), 99–104 (2011)Google Scholar
  40. 40.
    Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Evaluation of 3d-failure of foams with the morphable limit surface. In: Kowalczyk P. (eds.) 37th Solid Mechanics Conference, Solmech-2010, September 6–10, pp. 94–95. Warsaw (2010)Google Scholar
  41. 41.
    Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Strength hypotheses for hard polymeric foams. In: Radusch H.J., Fiedler L. (eds.) 14. International Scientific Conference on Polymeric Materials P.2010, 15.–17. September, no. 27 p. Halle (Saale) (2010)Google Scholar
  42. 42.
    Kolupaev, V.A., Massow, H.: Scherversuche mit einem Vielzweckprobekörper. In: Grellmann, W., (eds.) 13. Tagung Deformations- und Bruchverhalten von Kunststoffen, number 10 p., Merseburg, 2011. Kunststoff-Kompetenzzentrum Halle- MerseburgGoogle Scholar
  43. 43.
    Kolupaev, V.A., Mohr-Matuschek, U., Altenbach, H.: Application of strength hypotheses for POM (in German: Anwendung von Festigkeitshypothesen an POM). In: Radusch, H.J., Fiedler, L., (eds.) 14. International Scientific Conference on Polymeric Materials P.2010, 15.–17. September, number 12 p. Halle (Saale) (2010)Google Scholar
  44. 44.
    Kolupaev, V.A., Mönnich, S., Bijanzadeh, P.: Specimens for 2d- and 3d-tension tests of hard foams (in German: Probekörper für 2D- und 3D-Zugversuche mit harten Schäumen)). In: Grellmann W. (ed.), 13. Tagung Deformations- und Bruchverhalten von Kunststoffen, number 21 p., Merseburg, 2011. Kunststoff-Kompetenzzentrum Halle-MerseburgGoogle Scholar
  45. 45.
    Kolupaev, V.A., Yu, M.H., Altenbach, H.: Visualisation of the Unified Strength Theory. Arch. Appl. Mech. doi: 10.1007/s00419-013-0735-8 (2013)
  46. 46.
    Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  47. 47.
    Lequeu, P.H., Gilormini, P., Montheillet, F., Bacroix, B., Jonas, J.J.: Yield surfaces for textured polycrystals. Acta Metall. 35(2), 439–451, 1159–1174 (1987)Google Scholar
  48. 48.
    Lüpfert H.P.: Schubspannungs-Interpretationen der Festigkeitshypothese von Huber / v. Mises / Hencky und ihr Zusammenhang. Technische Mechanik 12(4), 213–217 (1991)Google Scholar
  49. 49.
    Mendelson A.: Plasticity: Theory and Application. Krieger, Malabar (1968)Google Scholar
  50. 50.
    Michno M.J., Findley W.N.: An historical perspective of yield surface investigations for metals. Int. J. Non-Linear Mechanics 11, 59–82 (1976)CrossRefzbMATHGoogle Scholar
  51. 51.
    Novozhilov V.V.: O prinzipah obrabotki rezultatov staticheskih ispytanij izotropnyh materialov (in Russ.). Prikladnaja Matematika i Mechanika XV(2), 183–194 (1951)Google Scholar
  52. 52.
    Ottosen N.S., Ristinmaa M.: The Mechanics of Constitutive Modeling. Elsevier Science, London (2005)Google Scholar
  53. 53.
    Paul B.: Macroscopic plastic flow and brittle fracture. In: Liebowitz, H. (eds) Fracture: An Advanced Treatise, vol. II, pp. 313–496. Academic Press, New York (1968)Google Scholar
  54. 54.
    Pisarenko G.S., Lebedev A.A.: Deformation and Strength of Materials under complex stressed state (in Russ.: Deformirovanie i prochnost’ materialov pri slozhnom naprjazhennom sostojanii). Naukowa Dumka, Kiev (1976)Google Scholar
  55. 55.
    Prager W., Hodge P.: Theorie Ideal Plastischer Körper. Springer, Wien (1954)CrossRefzbMATHGoogle Scholar
  56. 56.
    Raniecki B., Mróz Z.: Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting sd effect. Acta Mechanica 195, 81–102 (2008)CrossRefzbMATHGoogle Scholar
  57. 57.
    Reuss A.: Vereinfachte Beschreibung der plastischen Formänderungsgeschwindigkeiten bei Voraussetzung der Schubspannungsfließ bedingung. Zeitschrift für Angewandte Mathematik und Mechanik 13(5), 356–360 (1933)CrossRefzbMATHGoogle Scholar
  58. 58.
    Schmidt R.: Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet. Ing. Arch 3(3), 215–235 (1932)CrossRefzbMATHGoogle Scholar
  59. 59.
    Shesterikov S.A.: On the theory of ideal plastic solid (in Russ.: K postroeniju teorii ideal’no plastichnogo tela). Prikladnaja matematika i mechanika, Rossijskaja Akademija Nauk 24(3), 412–415 (1960)Google Scholar
  60. 60.
    Sokolovsky V.V.: Theory of Plasticity (in Russ. and English: Teorija plastichnosti). Izdatelstvo Akademii Nauk SSSR, Moscow (1946)Google Scholar
  61. 61.
    Sokolovsky V.V.: Theory of Plasticity (in Russ.: Teorija plastichnosti). Staatlicher Verlag der techn.-theor. Literatur, Moscow (1950)Google Scholar
  62. 62.
    Stockton F.D., Drucker D.C.: Fitting mathematical theory of plasticity to experimental results. J. of Colloid Science 5(3), 239–250 (1950)CrossRefGoogle Scholar
  63. 63.
    Szczepiński W., Szlagowski J.: Plastic Design of Complex Shape Structures. Ellis Horwood Limited and PWN-Polish Scientific Publishers, Chichester (1990)Google Scholar
  64. 64.
    Tresca H.: Mémoire sur l’ecoulement des corps solides. Mémoires Pres. par Div. Sav. 18, 75–135 (1868)Google Scholar
  65. 65.
    von Mises, R.: Mechanik des festen Körpers im plastischen deformablen Zustand. Nachrichten der Kgl. Gesellschaft der Wissenschaften Göttingen, Math.-phys. Klasse, pp. 589–592 (1913)Google Scholar
  66. 66.
    Walczak J.: Nowoczesna miara wytęeżenia materiału. Archiwum mechaniki stosowanej III, 5–26 (1951)Google Scholar
  67. 67.
    Wolfram S.: The Mathematica Book: The Definitive Best-Selling Presentation of Mathematica by the Creator of the System. Wolfram Media, Champaign (2003)Google Scholar
  68. 68.
    Yu, M.-H.: General behaviour of isotropic yield function (in Chinese). Scientific and Technological Research Paper of Xi’an Jiaotong University, pp. 1–11 (1961)Google Scholar
  69. 69.
    Yu M.-H.: Twin shear stress yield criterion. Int. J. Mech. Sci. 25(1), 71–74 (1983)CrossRefGoogle Scholar
  70. 70.
    Yu M.-H.: Twin shear stress yield criterion. Int. J. Mech. Sci. 25(11), 845–846 (1983)CrossRefGoogle Scholar
  71. 71.
    Yu M.H.: Engineering Strength Theory (in Chinese). Higher Education Press, Beijing (1999)Google Scholar
  72. 72.
    Yu M.-H.: Unified Strength Theory and its Applications. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  73. 73.
    Yu M.H.: Linear and non-linear unified strength theory (in Chinese). Journal of Geotechnical Engineering 26(4), 662–669 (2007)Google Scholar
  74. 74.
    Yu M.-H., Xia G., Kolupaev V.A.: Basic characteristics and development of yield criteria for geomaterials. J. of Rock Mechanics and Geotechnical Engineering 1(1), 71–88 (2009)Google Scholar
  75. 75.
    Zhou X.P., Zhang Y.X., Wang L.H.: A new nonlinear yieid criterionn. Journal of Shanghai Jiaotong University (Science) E-9(1), 31–33 (2004)Google Scholar
  76. 76.
    Źyczkowski M.: Combined Loadings in the Theory of Plasticity. PWN-Polish Scientific Publ., Warszawa (1981)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.German Institute for Polymers (DKI)DarmstadtGermany
  2. 2.School of AerospaceXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  3. 3.Otto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations