Acta Mechanica

, Volume 224, Issue 3, pp 479–498

An explicit, direct approach to obtain multi-axial elastic potentials which accurately match data of four benchmark tests for rubbery materials—Part 2: general deformations

Article

Abstract

In a previous study (Xiao in Acta Mechanica 223:2039–2063, 2012), an explicit, straightforward approach has been proposed to obtain multi-axial elastic potentials for incompressible rubberlike materials. With a new idea of treating compressibility behavior, we extend this explicit, straightforward approach for incompressible deformations to a general case of finite compressible deformations. From data of a uniaxial test and a simple shear test, we obtain unified forms of multi-axial compressible elastic potentials which accurately match data of four benchmark tests. Reduced results are presented for the slight compressibility case. In particular, we apply the new approach with a simple form of rational interpolating function with two poles and from the uniaxial case derive a simple form of multi-axial compressible potential with a strain limit. It is found that this strain limit is a counterpart of the well-known von Mises limit for stress in elastoplasticity. For highly elastic materials with strain stiffening effects, this simple compressible potential is shown to be in good accord with data of four tests from small to large deformations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anand L.: On H. Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46, 78–82 (1979)MATHCrossRefGoogle Scholar
  2. 2.
    Anand L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech Phys. Solids 34, 293–304 (1986)CrossRefGoogle Scholar
  3. 3.
    Anderson M.L., Mott P.H., Roland C.M.: The compression of bonded rubber disks. Rubber Chem. Technol. 77, 293–302 (2004)CrossRefGoogle Scholar
  4. 4.
    Aron M.: On certain deformation classes of compressible Hencky materials. Math. Mech. Solids 19, 467–478 (2006)MathSciNetGoogle Scholar
  5. 5.
    Arruda E.M., Boyce M.C.: A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)CrossRefGoogle Scholar
  6. 6.
    Attard M.M., Hant G.N.: Hyperelastic constitutive modelling under finite strain. Int. J. Solids Struct. 41, 5327–5350 (2004)MATHCrossRefGoogle Scholar
  7. 7.
    Beatty M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Rev. 40, 1699–1733 (1987)CrossRefGoogle Scholar
  8. 8.
    Beatty M.F.: An average-stretch full-network model for rubber elasticity. J. Elast. 70, 65–86 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Beatty M.F.: On constitutive models for limited elastic, molecular based materials. Math. Mech. Solids 13, 375–387 (2008)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Beatty M.F., Stalnaker D.O.: The Poisson function of finite elasticity. J. Appl. Mech. 53, 807–813 (1986)MATHCrossRefGoogle Scholar
  11. 11.
    Bechir H., Chevalier L., Chaouche M., Boufala K.: Hyperelastic constitutive model for rubberlike materials based on the first Seth strain measures invariant. Eur. J. Mech. A/Solids 25, 110–124 (2006)MATHCrossRefGoogle Scholar
  12. 12.
    Bischoff E.B., Arruda E.M., Grush K.: A new constitutive model for the compressibility of elastomers at finite deformations. Rubber Chem. Technol. 74, 541–559 (2001)CrossRefGoogle Scholar
  13. 13.
    Blatz P.J., Ko W.L.: Application of finite elasticity theory to the deformation of rubber materials. J. Rheol. 6, 223–252 (1962)CrossRefGoogle Scholar
  14. 14.
    Boyce M.C., Arruda E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000)CrossRefGoogle Scholar
  15. 15.
    Bridgeman P.W.: Physics of High Pressure. Bell, London (1949)Google Scholar
  16. 16.
    Bruhns O.T., Xiao H., Meyers A.: Constitutive inequalities for an isotropic elastic strain energy function based on Hencky’s logarithmic strain tensor. Proc. R. Soc. Lond. A 457, 2207–2226 (2001)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Bruhns O.T., Xiao H., Meyers A.: Finite bending of a rectangular block of an elastic Hencky material. J. Elast. 66, 237–256 (2002)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Cam J.B.L., Toussaint E.: Cyclic volume changes in rubber. Mech. Mater. 41, 898–901 (2009)CrossRefGoogle Scholar
  19. 19.
    Chadwick P.: Thermo-mechanics of rubberlike materials. Phil. Trans. R. Soc. Lond. A. 276, 371–403 (1974)MATHCrossRefGoogle Scholar
  20. 20.
    Chadwick P., Creasy C.F.M.: Modified entropic elasticity of rubberlike materials. J. Mech. Phys. Solids 32, 337–357 (1984)MATHCrossRefGoogle Scholar
  21. 21.
    Christensen R.M.: A two material constant, nonlinear elastic stress constitutive equation including the effect of compressibility. Mech. Mater. 7, 155–162 (1988)CrossRefGoogle Scholar
  22. 22.
    Christensen R.C., Hoeve C.A.J.: Comparison between theoretical and experimental values of the volume changes accompanying rubber extension. J. Polym. Sci. A 8, 1503–1512 (1970)Google Scholar
  23. 23.
    Criscione J.C., Humphrey J.D., Douglas A.S., Hunter W.C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48, 2445–2465 (2000)MATHCrossRefGoogle Scholar
  24. 24.
    Diani J., Gilormini P.: Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behaviour of rubber-like materials. J. Mech. Phys. Solids. 53, 2579–2596 (2005)MATHCrossRefGoogle Scholar
  25. 25.
    Ehlers W., Eipper G.: The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mech. 130, 17–27 (1998)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Fitzjerald S.: A tensorial Hencky measure of strain and strain rate for finite deformation. J. Appl. Phys. 51, 5111–5115 (1980)CrossRefGoogle Scholar
  27. 27.
    Fried I., Johnson A.R.: A note on elastic energy density functions for largely deformed compressible rubber solids. Comp. Meth. Appl. Mech. Eng. 61, 53–64 (1988)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Fu, Y.B., Ogden, R.W. (eds.): Nonlinear Elasticity. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  29. 29.
    Gao Y.C.: Elastostatic crack tip behaviour for a rubberlike material. Theoret. Appl. Fract. Mech. 14, 219–231 (1990)CrossRefGoogle Scholar
  30. 30.
    Gao Y.C.: Large deformation field near a crack tip in rubberlike material. Theoret. Appl. Fract. Mech. 26, 155–162 (1997)CrossRefGoogle Scholar
  31. 31.
    Gee G., Stern J., Treloar L.R.G.: Volume changes in the stretching of vulcanized natural rubber. Trans. Faraday Soc. 46, 1101–1106 (1950)CrossRefGoogle Scholar
  32. 32.
    Gent A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Gent A.N.: Extensibility of rubber under different types of deformation. J. Rheol. 49, 271–275 (2005)CrossRefGoogle Scholar
  34. 34.
    Gent A.N., Lindley P.B.: Internal rupture of bonded rubber cylinders in tension. Proc. R. Soc. Lond. A 249, 195–205 (1959)CrossRefGoogle Scholar
  35. 35.
    Haupt P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2002)MATHCrossRefGoogle Scholar
  36. 36.
    Hencky, H.: Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Z. Technol. Phys. 9, 215–220 (1928); 457Google Scholar
  37. 37.
    Hewitt F.G., Anthony R.L.: Measurement of the isothermal volume dilation accompanying the unilateral extension of rubber. J. Appl. Phys. 29, 1411–1414 (1958)CrossRefGoogle Scholar
  38. 38.
    Hill R.: Constitutive inequalities for simple materials. J. Mech. Phys. Solids 16, 229–242 (1968)MATHCrossRefGoogle Scholar
  39. 39.
    Hill R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. Lond. A 326, 131–147 (1970)Google Scholar
  40. 40.
    Hill R.: Aspects of invariance in solid mechanics. Adv. Appl. Mech. 18, 1–75 (1978)MATHCrossRefGoogle Scholar
  41. 41.
    Horgan C.O., Murphy J.G.: Limiting chain extensibility constitutive models of Valanis–Landel type. J. Elast. 86, 101–111 (2007)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Horgan C.O., Murphy J.G.: Constitutive models for almost incompressible isotropic elastic rubber-like materials. J. Elast. 87, 133–146 (2007)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Horgan C.O., Murphy J.G.: On the volumetric part of strain-energy functions used in constitutive modeling of slightly compressible solid rubbers. Int. J. Solids Struct. 46, 3078–3085 (2009)MATHCrossRefGoogle Scholar
  44. 44.
    Horgan C.O., Murphy J.G.: A generalization of Hencky’s strain-energy density to model the large deformation of slightly compressible solid rubber. Mech. Mater. 41, 943–950 (2009)CrossRefGoogle Scholar
  45. 45.
    Horgan C.O., Murphy J.G.: Compression tests and constitutive models for the slight compressibility of elastic rubberlike materials. Int. J. Eng. Sci. 47, 1232–1239 (2009)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Horgan C.O., Murphy J.G.: Constitutive modeling for moderate deformations of slightly compressible rubber. J. Rheol. 53, 153–168 (2009)CrossRefGoogle Scholar
  47. 47.
    Horgan C.O., Saccomandi G.: Finite thermoelasticity with limiting chain extensibility. J. Mech. Phys. Solids 51, 1127–1146 (2003)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Horgan C.O., Saccomandi G.: Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem. Technol. 79, 1–18 (2006)CrossRefGoogle Scholar
  49. 49.
    Horgan C.O., Saccomandi G.: Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility. J. Elast. 77, 123–138 (2004)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Levinson M., Burges I.W.: A comparison of some simple constitutive relations for slightly compressible rubber-like materials. Int. J. Mech. Sci. 13, 563–572 (1971)CrossRefGoogle Scholar
  51. 51.
    Murphy J.G.: Strain energy functions for a Poisson power law function in simple torsion of compressible hyperelastic materials. J. Elast. 60, 151–164 (2000)MATHCrossRefGoogle Scholar
  52. 52.
    Murphy J.G.: Equivalent and separable strain-energy functions in compressible, finite elasticity. Int. J. Nonlinear Mech. 40, 323–329 (2005)MATHCrossRefGoogle Scholar
  53. 53.
    Nicholson D.W., Lin B.: Theory of thermohyperelasticity for near-incompressible elastomers. Acta Mech. 116, 15–28 (1996)MATHCrossRefGoogle Scholar
  54. 54.
    Ogden R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for compressible rubber-like materials. Proc. R. Soc. Lond. A 328, 567–583 (1972)MATHCrossRefGoogle Scholar
  55. 55.
    Ogden R.W.: Volume changes associated with the deformation of rubber-like solids. J. Mech. Phys. Solids 24, 323–338 (1976)CrossRefGoogle Scholar
  56. 56.
    Ogden R.W.: Nearly isochoric elastic deformations: application to rubberlike solids. J. Mech. Phys. Solids 26, 37–57 (1978)MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Ogden R.W.: Elastic deformations of rubberlike solids. In: Hopkins, H.G., Sewell, M.J. (eds.) Mechanics of Solids: The Rodney Hill 60th Anniversary Volume, pp. 499–537. Pergamon, Oxford (1982)Google Scholar
  58. 58.
    Ogden R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)Google Scholar
  59. 59.
    Ogden R.W.: Recent advances in the phenomenological theory of rubber elasticity. Rubber Chem. Technol. 59, 361–383 (1986)CrossRefGoogle Scholar
  60. 60.
    Ogden R.W., Saccomandi G., Sgura I.: On worm-like chain models within the three-dimensional continuum mechanics framework. Proc. R. Soc. Lond. A 462, 749–768 (2006)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Penn R.W.: Volume changes accompanying the extension of rubber. Trans. Soc. Rheol. 14, 509–517 (1970)CrossRefGoogle Scholar
  62. 62.
    Rajagopal K.R., Saccomandi G.: The mechanics and mathematics of the effect of pressure on the shear modulus of elastomers. Proc. R. Soc. Lond. A 465, 3859–3874 (2009)MATHCrossRefGoogle Scholar
  63. 63.
    Rice J.R.: Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanism. In: Argon, A.S. (ed.) Constitutive Equations in Plasticity, pp. 21–79. MIT Press, Cambridge (1975)Google Scholar
  64. 64.
    Rogovoy A.: Effect of elastomer slight compressibility. Eur. J. Mech. A/Solids 20, 757–775 (2001)MATHCrossRefGoogle Scholar
  65. 65.
    Scott N.H.: The incremental bulk modulus, Young’s modulus and Poisson ratio in nonlinear isotropic elasticity: physically reasonable response. Math. Mech. Solids 12, 526–542 (2007)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Treloar L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)Google Scholar
  67. 67.
    Treloar L.R.G.: Dilation of rubber on extension. Polymer 19, 1414–1420 (1978)CrossRefGoogle Scholar
  68. 68.
    Wood L.A., Martin G.M.: Compressibility of natural rubber at pressure below 500 kg/cm2. J. Res. Nat. Bur. Stand. 68, 259–268 (1964)CrossRefGoogle Scholar
  69. 69.
    Xiao H.: Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscip. Model. Mater. Struct. 1, 1–52 (2005)Google Scholar
  70. 70.
    Xiao H.: An explicit, direct approach to obtaining multi-axial elastic potentials which exactly match data of four benchmark tests for incompressible rubberlike materials-part 1: incompressible deformations. Acta Mechanica 223, 2039–2063 (2012). doi:10.1007/s00707-012-0684-2 CrossRefGoogle Scholar
  71. 71.
    Xiao H., Bruhns O.T., Meyers A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Xiao H., Bruhns O.T., Meyers A.: Hypo-elasticity model based upon the logarithmic stress rate. J. Elast. 47, 51–68 (1997)MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Xiao H., Bruhns O.T., Meyers A.: Existence and uniqueness of the integrable-exactly hypoelastic equation τͦ* = λ(tr D)I + 2μ D and its significance to finite inelasticity. Acta Mech. 138, 31–50 (1999)MATHCrossRefGoogle Scholar
  74. 74.
    Xiao H., Bruhns O.T., Meyers A.: The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. R. Soc. Lond. A 456, 1865–1882 (2000)MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Xiao H., Bruhns O.T., Meyers A.: Basic issues concerning finite strain measures and isotropic stress-deformation relations. J. Elast. 67, 1–23 (2002)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Xiao H., Bruhns O.T., Meyers A.: Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mech. 168, 21–33 (2004)MATHCrossRefGoogle Scholar
  77. 77.
    Xiao H., Bruhns O.T., Meyers A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)MATHCrossRefGoogle Scholar
  78. 78.
    Xiao H., Bruhns O.T., Meyers A.: Thermodynamic laws and consistent Eulerian formulation of finite elastoplasticity with thermal effects. J. Mech. Phys. Solids 55, 338–365 (2007)MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Xiao H., Chen L.S.: Hencky’s logarithmic strain measure and dual stress-strain and strain-stress relations in isotropic finite hyperelasticity. Int. J. Solids Struct. 40, 1455–1463 (2003)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina

Personalised recommendations