Acta Mechanica

, Volume 223, Issue 12, pp 2591–2596 | Cite as

Elastic properties of hybrid graphene/boron nitride monolayer

Article

Abstract

Recently, hybridized monolayers consisting of hexagonal boron nitride (h-BN) phases inside a graphene layer have been synthesized and shown to be an effective way of opening band gap in graphene monolayers (Ci et al. in Nat Mater 9(5):430–435, 2010). In this paper, we report a first-principles density functional theory study of the h-BN domain size effect on the elastic properties of graphene/boron nitride hybrid monolayers (h-BNC). We found that both in-plane stiffness and longitudinal sound velocity of h-BNC linearly decrease with h-BN concentration. Our results could be used for the design of future graphene-based nanodevices of surface acoustic wave sensors and waveguides.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ci L., Song L., Jin C., Jariwala D., Wu D., Li Y., Srivastava A., Wang Z.F., Storr K., Balicas L., Liu F., Ajayan P.M.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9(5), 430–435 (2010)CrossRefGoogle Scholar
  2. 2.
    Wang X., Li X., Zhang L., Yoon Y., Weber P.K., Wang H., Guo J., Dai H.: N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928), 768 (2009)CrossRefGoogle Scholar
  3. 3.
    Martins T.B., Miwa R.H., da Silva A.J.R., Fazzio A.: Electronic and transport properties of boron-doped graphene nanoribbons . Phys. Rev. Lett. 98(19), 196803 (2007)CrossRefGoogle Scholar
  4. 4.
    Lherbier A., Blase X., Niquet Y.M., Triozon F.M.C., Roche S.: Charge transport in chemically doped 2d graphene. Phys. Rev. Lett. 101(3), 036808 (2008)CrossRefGoogle Scholar
  5. 5.
    Peng Q., Ji W., De S.: Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study. Comput. Mater. Sci. 56, 11 (2012)CrossRefGoogle Scholar
  6. 6.
    Kawaguchi M., Kawashima T., Nakajima T.: Syntheses and structures of new graphite-like materials of composition BCN(h) and BC3N(h). Chem. Mater. 8(6), 1197–1201 (1996)CrossRefGoogle Scholar
  7. 7.
    Suenaga K., Colliex C., Demoncy N., Loiseau A., Pascard H., Willaime F.: Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278(5338), 653–655 (1997)CrossRefGoogle Scholar
  8. 8.
    Han W.-Q., Mickelson W., Cumings J., Zettl A.: Transformation of B[sub x]C[sub y]N[sub z] nanotubes to pure BN nanotubes. Appl. Phys. Lett. 81(6), 1110–1112 (2002)CrossRefGoogle Scholar
  9. 9.
    Kawasaki T., Ichimura T., Kishimoto H., Akbar A.A., Ogawa T., Oshima C.: Double atomic layers of graphene/monolayer h-BN on Ni(111) studied by scanning tunneling microscopy and scanning tunneling spectroscopy. Surf. Rev. Lett. 9(3–4), 1459–1464 (2002)CrossRefGoogle Scholar
  10. 10.
    Peng Q., De S.: Tunable band gaps of mono-layer hexagonal BNC heterostructures. Physica E 44, 1776 (2012)CrossRefGoogle Scholar
  11. 11.
    Mazzoni M.S.C., Nunes R.W., Azevedo S., Chacham H.: Electronic structure and energetics of Bx CyNz layered structures. Phys. Rev. B 73(7), 073108 (2006)CrossRefGoogle Scholar
  12. 12.
    Martins J.D.R., Chacham H.: Disorder and segregation in B–C–N graphene- type layers and nanotubes: tuning the band gap. ACS Nano 5(1), 385 (2011)CrossRefGoogle Scholar
  13. 13.
    Bhowrnick S., Singh A.K., Yakobson B.I.: Quantum dots and nanoroads of graphene embedded in hexagonal boron nitride. J. Phys. Chem. C 115(20), 9889 (2011)CrossRefGoogle Scholar
  14. 14.
    Singh A.K., Yakobson B.I.: Electronics and magnetism of patterned graphene nanoroads. Nano Lett. 9(4), 1540–1543 (2009)CrossRefGoogle Scholar
  15. 15.
    Manna A.K., Pati S.K.: Tunable electronic and magnetic properties in B(x)N(y)C(z) nanohybrids: effect of domain segregation . J. Phys. Chem. C 115(21), 10842 (2011)CrossRefGoogle Scholar
  16. 16.
    Kresse G., Hafner J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993)CrossRefGoogle Scholar
  17. 17.
    Kresse G., Hafner J.: Ab initio molecular-dynamics simulation of the liquid-metalcamorphoussemiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994)CrossRefGoogle Scholar
  18. 18.
    Kresse G., Furthuller J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)CrossRefGoogle Scholar
  19. 19.
    Kresse G., Furthuller J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  20. 20.
    Hohenberg P., Kohn W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kohn W., Sham L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Perdew J., Burke K., Ernzerhof M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  23. 23.
    Blöchl P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)CrossRefGoogle Scholar
  24. 24.
    Jones R.O., Gunnarsson O.: The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61(3), 689–746 (1989)CrossRefGoogle Scholar
  25. 25.
    Francis G.P., Payne M.C.: Finite basis set corrections to total energy pseudopotential calculations. J. Phys. Cond. Matter 2(19), 4395–4404 (1990)CrossRefGoogle Scholar
  26. 26.
    Le Page Y., Saxe P.: Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 65(10), 104104 (2002)CrossRefGoogle Scholar
  27. 27.
    Liu L., Feng Y.P., Shen Z.X.: Structural and electronic properties of h-BN. Phys. Rev. B 68(10), 104102 (2003)CrossRefGoogle Scholar
  28. 28.
    Baskin Y., Meyer L.: Lattice constants of graphite at low temperatures. Phys. Rev. 100(2), 544 (1955)CrossRefGoogle Scholar
  29. 29.
    Lee C., Wei X., Kysar J.W., Hone J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRefGoogle Scholar
  30. 30.
    Wei X., Fragneaud B., Marianetti C.A., Kysar J.W.: Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys. Rev. B 80(20), 205407 (2009)CrossRefGoogle Scholar
  31. 31.
    Topsakal M., Cahangirov S., Ciraci S.: The response of mechanical and electronic properties of graphane to the elastic strain. Appl. Phys. Lett. 96(9), 091912 (2010)CrossRefGoogle Scholar
  32. 32.
    Kinsler L.E.: Fundamentals of Acoustics. Wiley, New York (2000)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Qing Peng
    • 1
  • Amir R. Zamiri
    • 1
  • Wei Ji
    • 1
  • Suvranu De
    • 1
  1. 1.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations