Acta Mechanica

, Volume 223, Issue 8, pp 1645–1656 | Cite as

Incompressible and locking-free finite elements from Rayleigh mode vectors: quadratic polynomial displacement fields

  • Gautam DasguptaEmail author


Under pure bending, with an arbitrary patch of plane four-node finite elements, the exact analytical algebraic expressions of deformation, strain and stress fields are numerically captured by a computer algebra program for both compressible and incompressible continua. Linear combinations of Rayleigh displacement vectors yield the Ritz test functions. These coupled fields model pure bending of an Euler-Bernoulli beam with appropriate linearly varying axial strains devoid of shear. Such Courant admissible functions allow an undeformed straight side to curve in flexure. Since these displacement vectors satisfy equilibrium conditions, they are necessarily functions of the Poisson’s ratio. Applications in bio-, micro- and nano-mechanics motivated this formulation that blurs the frontier between the finite and the boundary element methods. Exact integration yields the element stiffness matrix of a compressible convex or concave quadrilateral, or a triangular element with a side node. For the generic energy density integral, the paper furnishes an analytical expression that can be incorporated in Fortran or C ++. In isochoric plane strain problems, the Rayleigh kinematic mode of dilatation is replaced by a constant element pressure. The equivalent nodal loadings are calculated according to the Ritz variational statement. Subsequently, without assembling the global stiffness matrix, nodal compatibility and equilibrium equations are solved in terms of Rayleigh modal participation factors.


Boundary Element Method Strain Energy Density Absolute Nodal Coordinate Formulation Element Stiffness Matrix Exact Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Backus, J.: Fortran programmer’s reference manual. Technical report, IBM Corporation, New York (1956). (Backus: project leader)Google Scholar
  2. 2.
    Bhatti, M.A.: Fundamental Finite Element Analysis and Applications: with Mathematica and Matlab Computations. Wiley, New York (2005). ISBN-13: 978-0471648086Google Scholar
  3. 3.
    Brebbia C.A., Dominguez J.: Boundary Elements—An Introductory Course. McGraw-Hill, New York (1992)zbMATHGoogle Scholar
  4. 4.
    Buchberger, B.: White-box blac-box strategies in symbolic computations. In: Wolfram Research Technical Report, Mathematica Developers Conference, Rotterdam, The Netherlands. Wolfram Research, Chamaign, IL (1993)Google Scholar
  5. 5.
    Buchberger, B.: Overview on theorema. In: Buchberger, B. (ed.) Theorema Workshop. RISC-Linz Institut für symbolisches Rechnen, Johannes Kepler Universität, Hagenberg, Austria (1997)Google Scholar
  6. 6.
    Chu, C.K.: Computational fluid dynamics. AIAA Selected reprint series. AIAA, 1973. AIAA Selected Reprint Series, Vol. 4, Computational Fluid Dynamics, C. K. Chu, Ed., 1968; Selected Papers in Physics, Vol. VI, The Physical Society of Japan, Tokyo (1971)Google Scholar
  7. 7.
    Church A.: The Calculi of Lambda-Conversion. Princeton University Press, Princeton (1941)Google Scholar
  8. 8.
    Clough, R.W.: The finite element method in plane stress analysis. In: Proceedings, 2nd Conference on Electronic Computation, A.S.C.E. Structural Division, pp. 345–378. Pittsburgh, PA (1960)Google Scholar
  9. 9.
    Constantinescu A., Korsunsky A.: Elasticity with Mathematica: An Introduction to Continuum Mechanics and Linear Elasticity, 1st edn. Cambridge University Press, New York, NY, USA (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Courant R.: Variational methods for the solution of problems of equilibrium and vibration. Bull. Am. Math. Soc. 49, 1–29 (1943)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dasgupta G.: Validity of Almansi theorems for anisotropic boundary elements. J. Eng. Anal. 5(2), 89–94 (1988)CrossRefGoogle Scholar
  12. 12.
    Dasgupta G.: Integration within polygonal finite elements. J. Aerosp. Eng. ASCE 16(1), 9–18 (2003)CrossRefGoogle Scholar
  13. 13.
    Dasgupta G., Treil J.: Maxillo-facial frame: finite element shapes. Math. J. 8, 235–246 (2001)Google Scholar
  14. 14.
    Dasgupta G., Wachspress E.L.: Basis functions for concave polygons. Comput. Math. Appl. 56(2), 459–468 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Fix, G.M.: Hybrid finite element methods. SIAM Rev. 18(3) (1976)Google Scholar
  16. 16.
    Floater M.S., Hormann K., Kós G.: A general construction of barycentric coordinates over convex polygons. Ger. Res. 1(v), 311–331 (2006)Google Scholar
  17. 17.
    Fritzson P., Engelson V., Sheshadri K.: MathCode: A system for C++ or Fortran code generation from Mathematica. Math. J. 10(4), 740–776 (2008)Google Scholar
  18. 18.
    Gerstmayr J., Irschik H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318(3), 461–487 (2008)CrossRefGoogle Scholar
  19. 19.
    Gout H.: Construction of a hermite rational interpolation Wachspress type finite element. Comput. Math. Appl. 5(4), 337–347 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hassani B., Tavakkoli S.M.: Derivation of incompatible modes in nonconforming finite elements using hierarchical shape functions. Asian J. Civil Eng. (Build. Hous.) 6(3), 153–165 (2005)zbMATHGoogle Scholar
  21. 21.
    Irons B.M.: Quadrature rules for brick based finite elements. Int. J. Numer. Methods Eng. 3, 293–294 (1971)zbMATHCrossRefGoogle Scholar
  22. 22.
    Irons B.M., Razzaque A.: Experience with the Patch Test for Convergence of Finite Elements Method. Academic Press, New York (1972)Google Scholar
  23. 23.
    Irons B., Ahmad S.: Techniques of Finite Elements. Wiley, New York (1980)Google Scholar
  24. 24.
    Irschik H.: On the necessity of surface growth terms for the consistency of jump relations at a singular surface. Acta Mech. 162, 192–211 (2003)CrossRefGoogle Scholar
  25. 25.
    Irschik H.: On eigenstrains without displacements. Acta Mech. 178, 111–122 (2005)zbMATHCrossRefGoogle Scholar
  26. 26.
    Irschik H.: On rational treatments of the general laws of balance and jump, with emphasis on configurational formulations. Acta Mech. 194, 11–32 (2007)zbMATHCrossRefGoogle Scholar
  27. 27.
    Irschik, H.: A systematic treatment of growth terms appearing in continuum mechanics formulations for biological materials. In: Second International Conference on Algebraic Biology, 2007 (AB’07). RISC, Hagenberg, Austria (2007)Google Scholar
  28. 28.
    Loikkanen M.J., Irons B.M.: An 8-node brick finite element. Int. J. Numer. Methods Eng. 20(3), 523–528 (1984)zbMATHCrossRefGoogle Scholar
  29. 29.
    MacAlarney M.E.: Use of the boundary element method for biological morphometrics. J. Biomech. 28(5), 609–616 (1995)CrossRefGoogle Scholar
  30. 30.
    MacNeal R.H.: Finite Elements: Their Design and Performance. Marcel Dekker, New York (1994)Google Scholar
  31. 31.
    MacNeal R.H.: Toward a defect-free four-noded membrane element. Finite Elem. Anal. Des. 5(1), 31–37 (1989)CrossRefGoogle Scholar
  32. 32.
    McAlarney M.E., Dasgupta G., Moss M.L., Moss-Salentijn L.: Boundary macroelements and finite elements in biological morphometrics: A preliminary comparison. presented at the computers in biomedicine conference. In: Held, K.D., Brebbia, C.A., Ciskowski, R.D. (eds.) Computers in Biomedicine, pp. 61–72. Computational Mechanics Publisher, Southampton, UK (1991)Google Scholar
  33. 33.
    McAlarney M.E., Dasgupta G., Moss M.L., Moss-Salentijn L.: Anatomical macro element in the study of cranial facial rat growth. J. Cranial Fac. Growth Dev. Biol. 12, 3–12 (1992)Google Scholar
  34. 34.
    McAlarney, M.E., Moss-Salentijn, L., Moss, M.L., Basra, M., Dasgupta, G.: Macro/finite element meshes. In: Lutes, L.D., Niedzwecki, J.M. (eds.) Engineering Mechanics, College Station TX. Ninth Engineering Mechanics Conference, American Society of Civil Engineers, pp. 960–963 (1992)Google Scholar
  35. 35.
    McCarthy, J.: Programs with common sense. Technical report, National Physical Laboratory, Teddington, England. Paper presented at the symposium on the mechanization of thought processes (1958)Google Scholar
  36. 36.
    McCarthy, J., Brayton, R., Edwards, D., Fox, P., Hodes, L., Luckham, D., Maling, K., Park, D., Russell, S.: Lisp i programmers manual. Technical report, Artificial Intelligence Group, M.I.T. Computation Center and Research Laboratory, Cambridge, Massachusetts (1960)Google Scholar
  37. 37.
    Moss M.L.: The functional matrix hypothesis revisited. Am. J. Orthod. Dentofac. Orthop. 112, 8–10; 221–226; 338–341; 410–417 (1997)Google Scholar
  38. 38.
    Nachbagauer K., Pechstein A., Irschik H., Gerstmayr J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26, 245–263 (2011). doi: 10.1007/s11044-011-9249-8 zbMATHCrossRefGoogle Scholar
  39. 39.
    Perlis, A.J., Samelsøn, K.: International algebraic language. Technical report, Comm. Assoc. Comp. Mach. (1958) [Preliminary report]Google Scholar
  40. 40.
    Pian T.H.H., Wu C.-C.: Hybrid and Incompatible Finite Element Methods. CRC Press, Boca Raton, FL (2006)zbMATHGoogle Scholar
  41. 41.
    Publico, A.: Tensorial biomophometrics: continuum, discrete, statistical aspects. PhD thesis, Columbia University (2000)Google Scholar
  42. 42.
    Ritz W.: Über eine neue Methode zur Lösung gewisser Variationalprobleme der mathematischen Physik. J. reine angew. Math. 135, 1–61 (1908)zbMATHGoogle Scholar
  43. 43.
    Samuel P.: Projective Geometry. Springer, New York, NY (1988)zbMATHCrossRefGoogle Scholar
  44. 44.
    Skalak R., Dasgupta G., Moss M.L., Otten E., Dullemeijr P., Vilmann H.: Analytical description of growth. J. Theor. Biol. 94, 555–577 (1982)CrossRefGoogle Scholar
  45. 45.
    Strang G.: Variational crimes in the finite element method. In: Aziz, A.K. (ed.) Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, pp. 689–710. Academic Press, New York (1972)Google Scholar
  46. 46.
    Taig, I.C.: Structural analysis by the matrix displacement method. Technical report, British Aircraft Corporation, Warton Aerodrome: English Electric Aviation Limited. SO 17: Internal Report (1961)Google Scholar
  47. 47.
    Taig I.C.: Structural Analysis by the Matrix Displacement Method. English Electric Aviation Limited, Warton (1962)Google Scholar
  48. 48.
    Wachspress E.L.: A Rational Basis for Function Approximation, vol. 228 of Lecture Notes in Mathematics. Springer, Berlin (1971)Google Scholar
  49. 49.
    Wolfram S.: A New Kind of Science. Wolfram Media, NY (2002)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Civil Engineering and Engineering Mechanics, School of Engineering and Applied SciencesColumbia UniversityNew YorkUSA

Personalised recommendations