Acta Mechanica

, Volume 223, Issue 8, pp 1583–1596 | Cite as

On a thermodynamic theory of rods with two temperature fields

  • Holm AltenbachEmail author
  • Mircea Bîrsan
  • Victor A. Eremeyev


This paper presents a thermodynamic theory for elastic rods using the model of directed curves. In this model, the thin rod-like bodies are described as deformable curves with a triad of rigidly rotating vectors attached to each point. To account for the thermal effects in rods, we introduce two independent temperature fields: the absolute temperature field and the temperature deviation field. We present a complete derivation of the non-linear equations of thermoelastic rods, starting from the principles of thermodynamics. Finally, we prove the uniqueness of solution to the linearized equations of thermoelastodynamics for rods.


Constitutive Equation Energy Balance Equation Entropy Inequality Thermodynamic Theory Constitutive Assumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Todhunter, I., Pearson, K.: A History of the Theory of Elasticity and Strength of Materials, vol. I: Galilei to Saint-Venant 1639–1850, vol. II (Part I & II): Saint Venant to Lord Kelvin, Cambridge University Press, Cambridge (1886)Google Scholar
  2. 2.
    Todhunter, I., Pearson, K.: A History of the Theory of Elasticity and Strength of Materials, vol. II (Part I & II): Saint Venant to Lord Kelvin, Cambridge University Press, Cambridge (1893)Google Scholar
  3. 3.
    Timoshenko S.P.: History of Strength of Materials with a Brief Account of the History of Theory of Elasticity and Theory of Structures. McGraw-Hill, New York, NY (1953)Google Scholar
  4. 4.
    Antman, S.S.: Nonlinear Problems of Elasticity. Series Applied Mathematical Sciences, vol. 107. Springer, New York, NY (1995)Google Scholar
  5. 5.
    Eliseev V.V.: Mechanics of Elastic Bodies (in Russian). Politekhn. Univ. Publ., St. Petersburg (1996)Google Scholar
  6. 6.
    Svetlitsky V.A.: Statics of Rods. Springer, Berlin (2000)zbMATHGoogle Scholar
  7. 7.
    Rubin M.B.: Cosserat Theories: Shells, Rods, and Points. Kluwer Academic Publishers, Dordrecht (2000)zbMATHGoogle Scholar
  8. 8.
    Hodges, D.H.: Nonlinear Composite Beam Theory. Progress in Astronautics and Aeronautics, vol. 213. American Institute of Aeronautics and Astronautics Inc., Reston, VA (2006)Google Scholar
  9. 9.
    Zhilin P.A.: Applied Mechanics—Theory of Thin Elastic Rods (in Russian). Politekhn. Univ. Publ., St. Petersburg (2007)Google Scholar
  10. 10.
    Ieşan D.: Classical and Generalized Models of Elastic Rods. Chapman & Hall/CRC Press, Boca Raton (2009)zbMATHGoogle Scholar
  11. 11.
    Berdichevsky V.L.: Variational Principles of Continuum Mechanics. II. Applications. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  12. 12.
    Cosserat E., Cosserat F.: Théorie des corps déformables. A. Herman et Fils, Paris (1909)Google Scholar
  13. 13.
    Ericksen J.L., Truesdell C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1(1), 295–323 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Green A.E., Naghdi P.M.: Non-isothermal theory of rods, plates and shells. Int. J. Solids Struct. 6, 209–244 (1970)zbMATHCrossRefGoogle Scholar
  15. 15.
    Green A.E., Naghdi P.M.: On thermal effects in the theory of rods. Int. J. Solids Struct. 15, 829–853 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    DeSilva C.N., Whitman A.B.: Thermodynamical theory of directed curves. J. Math. Phys 12(8), 1603–1609 (1971)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kafadar C.B.: On the nonlinear theory of rods. Int. J. Eng. Sci. 10(4), 369–391 (1972)zbMATHCrossRefGoogle Scholar
  18. 18.
    Green A.E., Naghdi P.M., Wenner M.L.: On the theory of rods. II. Developments by direct approach. Proc. Roy. Soc. Lond. A. 337(1611), 485–507 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Beyrouthy J., Neff P.: A viscoelastic thin rod model for large deformations: numerical examples. Math. Mech. Solids 16(8), 887–896 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Irschik H., Ziegler F.: Thermal shock loading of elastoplastic beams. J. Therm. Stress. 8, 53–69 (1985)CrossRefGoogle Scholar
  21. 21.
    Irschik H., Ziegler F.: Dynamic analysis of elastic-plastic beams by means of thermoelastic solutions. Int. J. Solids Struct. 21, 819–829 (1985)zbMATHCrossRefGoogle Scholar
  22. 22.
    Fotiu P., Irschik H., Ziegler F.: Forced vibrations of an elasto-plastic and deteriorating beam. Acta Mechanica 69, 193–203 (1987)zbMATHCrossRefGoogle Scholar
  23. 23.
    Irschik H.: Analogy between refined beam theories and the Bernoulli–Euler theory. Int. J. Solids Struct. 28, 1105–1112 (1991)zbMATHCrossRefGoogle Scholar
  24. 24.
    Irschik H.: On vibrations of layered beams and plates. ZAMM 73, T34–T45 (1993)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Krommer M., Irschik H.: On the influence of the electric field on free transverse vibrations of smart beams. Smart Mater. Struct. 8, 401–410 (1999)CrossRefGoogle Scholar
  26. 26.
    Irschik H.: A review on static and dynamic shape control of structures by piezoelectric actuation. Eng. Struct. 24, 5–11 (2002)CrossRefGoogle Scholar
  27. 27.
    Hummer A., Irschik H.: Large deformation and stability of an extensible elastica with an unknown length. Int. J. Solids Struct. 48(11), 1301–1310 (2011)CrossRefGoogle Scholar
  28. 28.
    Truesdell C.: Rational Thermodynamics. 2nd edn. Springer, New York (1984)zbMATHCrossRefGoogle Scholar
  29. 29.
    Maugin G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15, 173–192 (1990)CrossRefGoogle Scholar
  30. 30.
    Maugin, G.A., Muschik, W.: Thermodynamics with internal variables, part I: general concepts, part II: applications. J. Non-Equilib. Thermodyn. 19, 217–249, 250–289 (1994)Google Scholar
  31. 31.
    Muschik, W., Papenfuss, C., Ehrentraut, H.: A sketch of continuum thermodynamics. J. Non-Newton. Fluid Mech. 96(1–2, Sp. Iss. SI), 255–290 (2001)Google Scholar
  32. 32.
    Muschik W.: Survey of some branches of thermodynamics. J. Non-Equilib. Thermodyn. 33(2), 165–198 (2008)zbMATHCrossRefGoogle Scholar
  33. 33.
    Berezovski A., Engelbrecht J., Maugin G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81, 229–240 (2011)CrossRefGoogle Scholar
  34. 34.
    Simmonds J.G.: The thermodynamical theory of shells: descent from 3-dimensions without thickness expansions. In: Axelrad, E.K., Emmerling, F.A. (eds) Flexible Shells, Theory and Applications, pp. 1–11. Springer, Berlin (1984)CrossRefGoogle Scholar
  35. 35.
    Simmonds J.G.: A classical, nonlinear thermodynamic theory of elastic shells based on a single constitutive assumption. J. Elast. 105(1–2), 305–312 (2011)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Eremeyev V.A., Pietraszkiewicz W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59, 1395–1412 (2011)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Pietraszkiewicz W.: Refined resultant thermomechanics of shells. Int. J. Eng. Sci. 49(10), 1112–1124 (2011)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Simmonds J.G.: A simple nonlinear thermodynamic theory of arbitrary elastic beams. J. Elast. 81, 51–62 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Zhilin P.A.: Nonlinear theory of thin rods. In: Indeitsev, D.A., Ivanova, E.A., Krivtsov, A.M. (eds) Advanced Problems in Mechanics, vol. 2., pp. 227–249. Instit. Problems Mech. Eng. R.A.S. Publ., St. Petersburg (2006)Google Scholar
  40. 40.
    Bîrsan M., Altenbach H.: On the theory of porous elastic rods. Int. J. Solids Struct. 48, 910–924 (2011)CrossRefGoogle Scholar
  41. 41.
    Bîrsan M., Altenbach H.: Theory of thin thermoelastic rods made of porous materials. Arch. Appl. Mech. 81(10), 1365–1391 (2011)CrossRefGoogle Scholar
  42. 42.
    Ieşan D.: A theory of thermoelastic materials with voids. Acta Mech. 60, 67–89 (1986)CrossRefGoogle Scholar
  43. 43.
    Bîrsan, M., Altenbach, H., Sadowski, T., Eremeyev, V.A., Pietras, D.: Deformation analysis of functionally graded rods by the direct approach. Compos. Part B (2011). doi: 10.1016/j.compositesb.2011.09.003
  44. 44.
    Lurie A.I.: Theory of Elasticity. Springer, Berlin (2005)CrossRefGoogle Scholar
  45. 45.
    Lebedev L.P., Cloud M.J., Eremeyev V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey (2010)zbMATHCrossRefGoogle Scholar
  46. 46.
    Coleman B.D., Noll W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Zhilin P.A.: Applied Mechanics—Foundations of Shell Theory (in Russian). Politekhn. Univ. Publ., St. Petersburg (2006)Google Scholar
  48. 48.
    Altenbach H., Naumenko K., Zhilin P.A.: A direct approach to the formulation of constitutive equations for rods and shells. In: Pietraszkiewicz, W., Szymczak, C. (eds) Shell Structures: Theory and Applications, pp. 87–90. Taylor and Francis, London (2006)Google Scholar
  49. 49.
    Carlson D.E.: Linear thermoelasticity. In: Flügge, W. (eds) Handbuch der Physik, vol. VIa/2, pp. 297–346. Springer, Berlin (1972)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Holm Altenbach
    • 1
    Email author
  • Mircea Bîrsan
    • 2
    • 3
  • Victor A. Eremeyev
    • 1
    • 4
  1. 1.Fakultät für Maschinenbau, Institut für MechanikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.Department of MathematicsUniversity “A.I. Cuza” of IaşiIaşiRomania
  3. 3.Faculty of Civil Engineering and ArchitectureLublin University of TechnologyLublinPoland
  4. 4.South Scientific Center of RASci & South Federal UniversityRostov on DonRussia

Personalised recommendations