Advertisement

Acta Mechanica

, 222:131 | Cite as

Form-finding of tensegrity structures with multiple states of self-stress

  • Hoang Chi Tran
  • Jaehong LeeEmail author
Article

Abstract

A numerical method is presented for form-finding of tensegrity structures with multiple states of self-stress. At the first stage, the range of feasible sets of the nodal coordinates and the force densities are iteratively calculated by the only known information of the topology and the types of members until the required rank deficiencies of the force density and equilibrium matrices are satisfied, respectively. The linear constraints on the force densities which are derived from the obtained configuration’s symmetry properties and/or directly assigned by designers are then utilized to define a single integral feasible force density vector in the second stage. An explanation on the null space of the force density matrix that generates the configurations of the tensegrities is rigorously given. Several numerical examples are presented to demonstrate the efficiency and robustness in searching new self-equilibrium stable configurations of tensegrity structures with multiple states of self-stress.

Keywords

Null Space Multiple State Force Density Free Node Tensegrity Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fuller R.B.: Synergetics-Explorations in the Geometry of Thinking. Macmillan, London, UK (1975)Google Scholar
  2. 2.
    Tibert A.G., Pellegrino S.: Deployable tensegrity reflectors for small satellites. J. Spacecr. Rockets 39(5), 701–709 (2002)CrossRefGoogle Scholar
  3. 3.
    Fu F.: Structural behavior and design methods of tensegrity domes. J. Constr. Steel Res. 61(1), 23–35 (2005)CrossRefGoogle Scholar
  4. 4.
    Tran H.C., Lee J.: Self-stress design of tensegrity grid structures with exostresses. Int. J. Solids Struct. 47(20), 2660–2671 (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    Kebiche K., Kazi-Aoual M.N., Motro R.: Geometrical non-linear analysis of tensegrity systems. Eng. Struct. 21(9), 864–876 (1999)CrossRefGoogle Scholar
  6. 6.
    Rhode-Barbarigos L., Ali N.B.H., Motro R., Smith I.F.C.: Designing tensegrity modules for pedestrian bridges. Eng. Struct. 32(4), 1158–1167 (2010)CrossRefGoogle Scholar
  7. 7.
    Ingber D.E.: The architecture of life. Sci. Am. 278(1), 48–57 (1998)CrossRefGoogle Scholar
  8. 8.
    Stamenovic D.: Effects of cytoskeletal prestress on cell rheological behavior. Acta Biomater. 1(3), 255–262 (2005)CrossRefGoogle Scholar
  9. 9.
    Lazopoulos K.A., Lazopoulou N.K.: On the elastica solution of a tensegrity structure: application to cell mechanics. Acta Mech. 182(3), 253–263 (2006)zbMATHCrossRefGoogle Scholar
  10. 10.
    Connelly R., Whiteley W.: Second-order rigidity and prestress stability for tensegrity frameworks. SIAM J. Discrete Math. 9(3), 453–491 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Jórdan T., Recski A., Szabadka Z.: Rigid tensegrity labelings of graphs. Eur. J. Comb. 30(8), 1887–1895 (2009)zbMATHCrossRefGoogle Scholar
  12. 12.
    Paul C., Lipson H., Valero-Cuevas F.: Design and control of tensegrity robots for locomotion. IEEE T. Robot. 22(5), 944–957 (2006)CrossRefGoogle Scholar
  13. 13.
    Rovira A.G., Tur J.M.M.: Control and simulation of a tensegrity-based mobile robot. Robot. Auton. Syst. 57(5), 526–535 (2009)CrossRefGoogle Scholar
  14. 14.
    Wang B.B.: Free-standing Tension Structures: From Tensegrity Systems to Cable Strut Systems. Spon Press, London (2004)Google Scholar
  15. 15.
    Schek H.J.: The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 3(1), 115–134 (1974)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Motro, R., Najari, S., Jouanna, P.: Static and dynamic analysis of tensegrity systems. In: Proceedings of the International Symposium on Shell and Spatial Structures, Computational Aspects, pp. 270–279. Springer (1986)Google Scholar
  17. 17.
    Barnes M.R.: Form finding and analysis of tension structures by dynamic relaxation. Int. J. Space Struct. 14(2), 89–104 (1999)CrossRefGoogle Scholar
  18. 18.
    Masic M., Skelton R., Gill P.: Algebraic tensegrity form-finding. Int. J. Solids Struct. 42(16–17), 4833–4858 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Zhang J.Y., Ohsaki M.: Adaptive force density method for form-finding problem of tensegrity structures. Int. J. Solids Struct. 43(18-19), 5658–5673 (2006)zbMATHCrossRefGoogle Scholar
  20. 20.
    Estrada G., Bungartz H., Mohrdieck C.: Numerical form-finding of tensegrity structures. Int. J. Solids Struct. 43(22–23), 6855–6868 (2006)zbMATHCrossRefGoogle Scholar
  21. 21.
    Pagitz M., Tur J.M.M.: Finite element based form-finding algorithm for tensegrity structures. Int. J. Solids Struct. 46(17), 3235–3240 (2009)zbMATHCrossRefGoogle Scholar
  22. 22.
    Zhang L., Maurin B., Motro R.: Form-finding of nonregular tensegrity systems. J. Struct. Eng ASCE 132(9), 1435–1440 (2006)CrossRefGoogle Scholar
  23. 23.
    Micheletti A., Williams W.O.: A marching procedure for form-finding for tensegrity structures. J. Mech. Mater. Struct. 2(5), 101–126 (2007)CrossRefGoogle Scholar
  24. 24.
    Rieffel J., Valero-Cuevas F., Lipson H.: Automated discovery and optimization of large irregular tensegrity structures. Comput. Struct. 87(5–6), 368–379 (2009)CrossRefGoogle Scholar
  25. 25.
    Xu X., Luo Y.: Form-finding of nonregular tensegrities using a genetic algorithm. Mech. Res. Commun. 37(1), 85–91 (2010)CrossRefGoogle Scholar
  26. 26.
    Tran H.C., Lee J.: Advanced form-finding of tensegrity structures. Comput. Struct. 88(3-4), 237–246 (2010)CrossRefGoogle Scholar
  27. 27.
    Tran, H.C., Lee, J.: Determination of a unique configuration of free-form tensegrity structures. Acta Mech. (2011, accepted)Google Scholar
  28. 28.
    Li Y., Feng X.Q., Cao Y.P., Gao H.: A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures. Int. J. Solids Struct. 47(14–15), 1888–1898 (2010)zbMATHCrossRefGoogle Scholar
  29. 29.
    Tibert A.G., Pellegrino S.: Review of form-finding methods for tensegrity structures. Int. J. Space Struct. 18(4), 209–223 (2003)CrossRefGoogle Scholar
  30. 30.
    Juan S.H., Tur J.M.M.: Tensegrity frameworks: static analysis review. Mech. Mach. Theory 43(7), 859–881 (2008)zbMATHCrossRefGoogle Scholar
  31. 31.
    Sultan C.: Tensegrity: 60 years of art, science and engineering. Adv. App. Mech. 43, 69–145 (2009)CrossRefGoogle Scholar
  32. 32.
    Vassart N., Motro R.: Multiparametered formfinding method: application to tensegrity systems. Int. J. Space Struct. 14(2), 147–154 (1999)CrossRefGoogle Scholar
  33. 33.
    Motro R.: Tensegrity: Structural Systems for the Future. Kogan Page Science, London (2003)Google Scholar
  34. 34.
    Connelly R.: Rigidity and energy. Invent. Math. 66(1), 11–33 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Connelly R., Terrell M.: Globally rigid symmetric tensegrities. Topol. Struct. 21, 59–78 (1995)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Connelly R.: Tensegrity structures: why are they stable? In: Thorpe, M.F., Duxbury, P.M. (eds) Rigidity Theory and Applications, pp. 47–54. Kluwer, Dordrecht (1999)Google Scholar
  37. 37.
    Meyer C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)zbMATHCrossRefGoogle Scholar
  38. 38.
    Zhang J.Y., Ohsaki M.: Stability conditions for tensegrity structures. Int. J. Solids Struct. 44(11–12), 3875–3886 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Tran H.C., Lee J.: Advanced form-finding for cable-strut structures. Int. J. Solids Struct. 47(14–15), 1785–1794 (2010)zbMATHCrossRefGoogle Scholar
  40. 40.
    Pellegrino S.: Structural computations with the singular value decomposition of the equilibrium matrix. Int. J. Solids Struct. 30(21), 3025–3035 (1993)zbMATHCrossRefGoogle Scholar
  41. 41.
    Yang W.Y., Cao W., Chung T.S.: Applied Numerical Methods Using Matlabs. Wiley, United States of America (2005)CrossRefGoogle Scholar
  42. 42.
    Pellegrino S., Calladine C.R.: Matrix analysis of statically and kinematically indeterminate frameworks. Int. J. Solids Struct. 22(4), 409–428 (1986)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Architectural EngineeringSejong UniversitySeoulKorea

Personalised recommendations