Acta Mechanica

, Volume 220, Issue 1–4, pp 237–246 | Cite as

A family of bi-potentials describing the non-associated flow rule of pressure-dependent plastic models

Article

Abstract

In this paper, we discuss in detail the derivation of the bi-potential function used to express the flow rule of pressure-dependent non-associated plastic models. In particular, we show that an infinity of equivalent expressions of the bi-potential can be derived for pressure-dependent models. The method consists in applying a transformation to the plastic strain rate or the stress or both to recover the normality rule. Then, the Fenchel inequality is used to derive the bi-potential function. The construction method itself indicates clearly that a class with infinite equivalent expressions of the bi-potential can be derived.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Collins I.F., Houlsby G.T.: Application of thermomechanical principles to the modelling of geotechnical materials. Proc. Roy. Soc. Ser. A. 453, 1975–2001 (1997)MATHCrossRefGoogle Scholar
  2. 2.
    de Saxcé G.: Une généralisation de l’inégalité de Fenchel et ses applications aux lois constitutives. Comptes Rendus de l’Académie des Sciences de Paris, Série II 314, 125–129 (1992)MATHGoogle Scholar
  3. 3.
    Drucker D.-C., Prager W.: Soil mechanics and plasticity analysis or limit design. Quart. Appl. Math. 10, 157–165 (1953)MathSciNetGoogle Scholar
  4. 4.
    Eve R.A., Reddy B.D., Rockafellar R.T.: An internal variable theory of elastoplasticity based on the maximum plastic work inequality. Quart. Appl. Math. 48, 59–83 (1990)MATHMathSciNetGoogle Scholar
  5. 5.
    Han W., Reddy B.D.: Plasticity: Mathematical Theory and Numerical Analysis. Springer, Berlin (1999)MATHGoogle Scholar
  6. 6.
    Moreau J.J.: La notion de sur-potentiel et les liaisons en élastostatique. Comptes Rendus de l’Académie des Sciences 267, 954–957 (1968)MATHMathSciNetGoogle Scholar
  7. 7.
    Moreau J.-J.: Inf-convolution des fonctions numériques sur un espace vectoriel Proximité et dualité dans un espace hilbertien. Comptes Rendus de l’Académie des Sciences de Paris 256, 125–129 (1963)Google Scholar
  8. 8.
    Moreau J.-J.: Proximité et dualité dans un espace hilbertien. Bulletin de la Société Mathathématique de France 93, 273–299 (1965)MATHMathSciNetGoogle Scholar
  9. 9.
    Mróz Z.: Mathematical Models of Inelastic Behavior. Solid Mechanics Division, University of Waterloo, Canada (1973)Google Scholar
  10. 10.
    Moreau J.-J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26, 347–374 (1977)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mróz Z.: Mathematical Models of Inelastic Behavior. Solid Mechanics Division, University of Waterloo, Canada (1973)Google Scholar
  12. 12.
    Nguyen Q.S.: Matériaux élasto-visco-plastiques à potentiel généralisé. Comptes Rendus de l’Académie des Sciences. 277, 915–918 (1973)MATHGoogle Scholar
  13. 13.
    Halphen B., Nguyen Q.S.: Sur les matériaux standard généralisés. Journal de Mécanique 14, 39–63 (1975)MATHGoogle Scholar
  14. 14.
    Rockafellar R.T., Wets J.B.: Variational Analysis. Springer, Berlin (1998)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.INSA de Rennes-LGCGM/Structural Engineering Research GroupUniversité Européenne de BretagneRennes Cedex 7France
  2. 2.Laboratoire de Mécanique de LilleVilleneuve d’Ascq CédexFrance

Personalised recommendations