Advertisement

Acta Mechanica

, Volume 219, Issue 1–2, pp 145–167 | Cite as

Stabilization of a system modeling temperature and porosity fields in a Kelvin–Voigt-type mixture

  • Margareth S. Alves
  • Jaime E. Muñoz Rivera
  • Mauricio Sepúlveda
  • Octavio VeraEmail author
Article

Abstract

In this paper, we investigate the asymptotic behavior of solutions to the initial boundary value problem for the interaction between the temperature field and the porosity fields in a homogeneous and isotropic mixture from the linear theory of porous Kelvin–Voigt materials. Our main result is to establish conditions which insure the analyticity and the exponential stability of the corresponding semigroup. We show that under certain conditions for the coefficients we obtain a lack of exponential stability. A numerical scheme is given.

Keywords

Porosity Linear Theory Discrete Fourier Transform Exponential Stability Initial Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alves M.S., Muñoz Rivera J.E., Quintanilla R.: Exponential decay in a thermoelastic mixture of solids. Int. J. Solids Struct. 46, 1659–1666 (2009)CrossRefGoogle Scholar
  2. 2.
    Alves M.S., Muñoz Rivera J.E., Sepúlveda M., Villagrán O.V.: Exponential stability in thermoviscoelastic mixtures of solids. Int. J. Solids Struct. 46, 4151–4162 (2009)zbMATHCrossRefGoogle Scholar
  3. 3.
    Alves M.S., Muñoz Rivera J.E., Sepúlveda M., Villagrán O.V.: Analyticity of semigroups associated with thermoviscoelastic mixtures of solids. J. Therm. Stress. 32, 986–1004 (2009)CrossRefGoogle Scholar
  4. 4.
    Gearhart L.M.: Spectral theory for contraction semigroups on Hilbert spaces. Trans. Am. Math. Soc. 236, 385–394 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Huang F.L.: Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1, 43–56 (1985)zbMATHGoogle Scholar
  6. 6.
    Ieşan D., Quintanilla R.: On a theory of interacting continua with memory. J. Therm. Stress. 25, 1161–1178 (2002)CrossRefGoogle Scholar
  7. 7.
    Ieşan D., Quintanilla R.: A theory of porous thermoviscoelastic mixtures. J. Therm. Stress. 30, 693–714 (2007)CrossRefGoogle Scholar
  8. 8.
    Ieşan D., Nappa L.: On the theory of viscoelastic mixtures and stability. Math. Mech. Solids 13, 55–80 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Liu, Z., Zheng, S.: Semigroups associated with dissipative systems. In: CRC Research Notes in Mathematics, vol. 398. Chapman & Hall, London (1999)Google Scholar
  10. 10.
    Martínez F., Quintanilla R.: Some qualitative results for the linear theory of binary mixtures of thermoelastic solids. Collect. Math. 46, 263–277 (1995)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)zbMATHGoogle Scholar
  12. 12.
    Prüss J.: On the spectrum of C 0-semigroups. Trans. Am. Math. Soc. 284, 847–857 (1984)zbMATHCrossRefGoogle Scholar
  13. 13.
    Quintanilla R.: Exponential decay in mixtures with localized dissipative term. Appl. Math. Lett. 18, 1381–1388 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Quintanilla R.: Existence and exponential decay in the linear theory of viscoelastic mixtures. Eur. J. Mech. A/Solids 24, 311–324 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Margareth S. Alves
    • 1
  • Jaime E. Muñoz Rivera
    • 2
  • Mauricio Sepúlveda
    • 3
  • Octavio Vera
    • 4
    Email author
  1. 1.Departamento de MatemáticaUniversidade Federal de Viçosa-UFVViçosaBrasil
  2. 2.Laboratório Nacional de Computação CientíficaPetrópolisBrasil
  3. 3.CI2MA and Departamento de Ingeniería MatemáticaUniversidad de ConcepciónConcepciónChile
  4. 4.Departamento de MatemáticaUniversidad del Bío-BíoConcepciónChile

Personalised recommendations