Acta Mechanica

, Volume 217, Issue 3–4, pp 191–204 | Cite as

Nonsimple isotropic incompressible linear fluids surrounding one-dimensional structures

  • Giulio G. Giusteri
  • Alfredo Marzocchi
  • Alessandro Musesti
Article

Abstract

We introduce a model of fluid which has four main features: it readily emerges by a general continuum mechanical framework; it is a generalization maintaining most of the physical features of incompressible Newtonian fluids; it can model adherence interactions with one-dimensional structures surrounded by the fluid; the associated initial boundary-value problem is well-posed on three-dimensional domains.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Degiovanni M., Marzocchi A., Musesti A.: Cauchy fluxes associated with tensor fields having divergence measure. Arch. Ration. Mech. Anal. 147, 197–223 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Degiovanni M., Marzocchi A., Musesti A.: Edge-force densities and second-order powers. Ann. Mat. Pura Appl. 185, 81–103 (2006)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Deimling K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985)MATHGoogle Scholar
  4. 4.
    Fried E., Gurtin M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small length scales. Arch. Ration. Mech. Anal. 182, 513–554 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Germain P.: La méthode des puissances virtuelles en mécanique des milieux continus. Première partie. Théorie du second gradient. J. Mécanique 12, 235–274 (1973)MATHMathSciNetGoogle Scholar
  6. 6.
    Gurtin M.E., Williams W.O., Ziemer W.: Geometric measure theory and the axioms of continuum thermodynamics. Arch. Ration. Mech. Anal. 92, 1–22 (1986)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kikuchi N., Oden J.T.: Contact Problems in Elasticity. SIAM, Philadelphia (1988)MATHGoogle Scholar
  8. 8.
    Lebedev N.N.: Special Functions and Their Applications. Dover, New York (1972)MATHGoogle Scholar
  9. 9.
    Lions J.L., Magenes E.: Problèmes Aux Limites Non Homogènes et Applications, vol. 1. Dunod, Paris (1968)MATHGoogle Scholar
  10. 10.
    Lions J.L.: Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires. Dunod, Paris (1969)MATHGoogle Scholar
  11. 11.
    Marzocchi A., Musesti A.: Balanced powers in continuum mechanics. Meccanica 74, 369–389 (2003)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Musesti A.: Isotropic linear constitutive relations for nonsimple fluids. Acta Mech. 204, 81–88 (2009)MATHCrossRefGoogle Scholar
  13. 13.
    Noll W., Virga E.G.: Fit regions and functions of bounded variations. Arch. Ration. Mech. Anal. 102, 1–21 (1988)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Podio-Guidugli P.: A virtual power format for thermomechanics. Continuum Mech. Thermodyn. 20, 479–487 (2009)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Podio-Guidugli P., Vianello M.: Hypertractions and hyperstresses convey the same mechanical information. Continuum Mech. Thermodyn. 22, 163–176 (2010)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Giulio G. Giusteri
    • 1
  • Alfredo Marzocchi
    • 2
  • Alessandro Musesti
    • 2
  1. 1.Dipartimento di Matematica e ApplicazioniUniversità degli Studi di Milano-BicoccaMilanItaly
  2. 2.Dipartimento di Matematica e Fisica “N. Tartaglia”Università Cattolica del Sacro CuoreBresciaItaly

Personalised recommendations