Acta Mechanica

, Volume 214, Issue 1–2, pp 49–59 | Cite as

Phase field simulations of low-dimensional ferroelectrics

  • Jie Wang
  • Marc Kamlah
  • Tong-Yi Zhang


This paper reviews the previous work on phase field simulations of low-dimensional ferroelectrics of two-dimensional epitaxial ferroelectric islands, thin films, and nanoparticles. The simulations are conducted in real space with exact boundary conditions of a low-dimensional ferroelectric, but consuming a much longer simulation time in comparison with that conducted in Fourier space. For ferroelectric islands and thin films, the simulations exhibit spatial polarization distributions with different types of domain walls and find two critical thicknesses, at which the simulated material changes from a multidomain state to a single-domain state and from ferroelectric phase to paraelectric phase, respectively. The remanent polarization and the coercive field of the simulated ferroelectric films both decrease with decreasing film thickness. The simulations exhibit vortex patterns of polarizations, which have purely toroidal moments of polarizations and macroscopically negligible averaged polarizations, in stress-free nanoparticles when long-range electrostatic interactions are fully taken into account. However, a single-domain structure without any toroidal moment of polarizations is formed in small nanoparticles with strong long-range elastic interactions.


Domain Wall Spontaneous Polarization Polarization Distribution Polarization Pattern Island Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jiang B., Peng J.L., Bursill L.A., Zhong W.L.: Size effects on ferroelectricity of ultrafine particles of PbTiO3. J. Appl. Phys. 87, 3462–3467 (2000)CrossRefGoogle Scholar
  2. 2.
    Zhong W.L., Wang Y.G., Zhang P.L., Qu B.D.: Phenomenological study of the size effect on phase-transitions in ferroelectric particles. Phys. Rev. B 50, 698–703 (1994)CrossRefGoogle Scholar
  3. 3.
    Naumov I.I., Bellaiche L., Fu H.: Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004)CrossRefGoogle Scholar
  4. 4.
    Wang Y.G., Zhong W.L., Zhang P.L.: Surface and size effects on ferroelectric-films with domain-structures. Phys. Rev. B 51, 5311–5314 (1995)CrossRefGoogle Scholar
  5. 5.
    Cheng J., Wang B., Du S.: Effective electroelastic properties of polycrystalline ferroelectric ceramics predicted by a statistical model. Acta Mech. 138, 163–175 (1999)MATHCrossRefGoogle Scholar
  6. 6.
    Wang J., Shi S.Q., Chen L.Q., Li Y.L., Zhang T.Y.: Phase field simulations of ferroelectric/ferroelastic polarization switching. Acta. Mater. 52, 749–764 (2004)CrossRefGoogle Scholar
  7. 7.
    Wang J., Zhang T.Y.: Effect of long-range elastic interactions on the toroidal moment of polarization in a ferroelectric nanoparticle. Appl. Phys. Lett. 88, 182904 (2006)CrossRefGoogle Scholar
  8. 8.
    Li Y.L., Hu S.Y., Liu Z.K., Chen L.Q.: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 50, 395–411 (2002)CrossRefGoogle Scholar
  9. 9.
    Nambu S., Sagala D.A.: Domain formation and elastic long-range interaction in ferroelectric perovskites. Phys. Rev. B 50, 5838–5847 (1994)CrossRefGoogle Scholar
  10. 10.
    Hu H.L., Chen L.Q.: Three-dimensional computer simulation of ferroelectric domain formation. J. Am. Ceram. Soc. 81, 492–500 (1998)CrossRefGoogle Scholar
  11. 11.
    Cao W., Tavener S., Xie S.: Simulation of boundary condition influence in a second-order ferroelectric phase transition. J. Appl. Phys. 86, 5739–5746 (1999)CrossRefGoogle Scholar
  12. 12.
    Zhang W., Bhattacharya K.: A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta Mater. 53, 185–198 (2005)CrossRefGoogle Scholar
  13. 13.
    Wang J., Zhang T.Y.: Size effects in epitaxial ferroelectric islands and thin films. Phys. Rev. B 73, 144107 (2006)CrossRefGoogle Scholar
  14. 14.
    Wang J., Kamlah M., Zhang T.Y., Li Y., Chen L.Q.: Size-dependent polarization distribution in ferroelectric nanostructures: phase field simulations. Appl. Phys. Lett. 92, 162905 (2008)CrossRefGoogle Scholar
  15. 15.
    Wang J., Kamlah M., Zhang T.Y.: Phase field simulations of ferroelectric nanoparticles with different long-range-electrostatic and -elastic interactions. J. Appl. Phys. 105, 014104 (2009)CrossRefGoogle Scholar
  16. 16.
    Lines M.E., Glass A.M.: Principles and Applications of Ferroelectrics and Related Materials. Clarendon press, Oxford (1977)Google Scholar
  17. 17.
    Mueller R., Gross D., Schrade D., Xu B.X.: Phase field simulation of domain structures in ferroelectric materials within the context of inhomogeneity evolution. Int. J. Fract. 147, 173–180 (2007)MATHCrossRefGoogle Scholar
  18. 18.
    Zhang T.Y.: Strained ferroelectric thin films. Int. J. Appl. Mech. 1, 21–40 (2009)CrossRefGoogle Scholar
  19. 19.
    Roelofs A., Schneller T., Szot K., Waser R.: Piezoresponse force microscopy of lead-titanate nanograins possibly reaching the limit of ferroelectricity. Appl. Phys. Lett. 81, 5231–5233 (2002)CrossRefGoogle Scholar
  20. 20.
    Ahn C.H., Rabe K.M., Triscone J.-M.: Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe Hong Kong University of Science and TechnologyKowloon, Hong KongChina
  2. 2.Institute for Materials Research IIKarlsruheGermany
  3. 3.The Institute of Applied MechanicsZhejiang UniversityHangzhou, ZhejiangChina

Personalised recommendations