Acta Mechanica

, Volume 212, Issue 1–2, pp 83–91 | Cite as

Stress-dependent thermal relaxation effects in micro-mechanical resonators

Article

Abstract

Thermal relaxation is a key factor in determining the quality factor of micro and nano resonators, which controls the energy dissipation through the coupling of the mechanical and thermal domains. While the literature contains approximate, exact and computational models for quantitative analysis of thermo-elastic coupling, very few techniques are available to ‘tune’ it without changing the material, geometry or operating conditions. In this paper, we develop an analytical model that considers a pre-stress in a flexural resonator to modify the thermal relaxation time and thus increase the quality factor. The effects of length-scale, pre-stress and geometry on the quality factor have been analyzed. The model predicts that significant improvement in terms of dimensionless quality factors is possible by tuning the pre-stress.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yi Y.B.: Geometric effects on thermoelastic damping in MEMS resonators. J. Sound Vib. 309, 588–599 (2008)CrossRefGoogle Scholar
  2. 2.
    Duwel A., Candler R.N., Kenny T.W., Varghese M.: Engineering MEMS resonators with low thermoelastic damping. J. Microelectromech. Syst. 15, 1437–1445 (2006)CrossRefGoogle Scholar
  3. 3.
    Mihailovich R.E., MacDonald N.C.: Dissipation measurements of vacuum-operated single-crystal silicon microresonators. Sens. Actuators A 50, 199–207 (1995)CrossRefGoogle Scholar
  4. 4.
    Zhang C., Xu G., Jiang Q.: Analysis of the air-damping effect on a micromachined beam resonator. Math. Mech. Solids 8, 315–325 (2003)MATHCrossRefGoogle Scholar
  5. 5.
    Hao Z., Ayazi F.: Support loss in the radial bulk-mode vibrations of center-supported micromechanical disk resonators. Sens. Actuators A 134, 582–593 (2007)CrossRefGoogle Scholar
  6. 6.
    Lifshitz R., Roukes M.L.: Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61, 5600 (2000)CrossRefGoogle Scholar
  7. 7.
    Zener C.: Internal friction in solids II. General theory of thermoelastic internal friction. Phys. Rev. 53, 90 (1938)CrossRefGoogle Scholar
  8. 8.
    Zener C., Otis W., Nuckolls R.: Internal friction in solids III. Experimental demonstration of thermoelastic internal friction. Phys. Rev. 53, 100 (1938)CrossRefGoogle Scholar
  9. 9.
    Zener C.: Internal friction in solids. Proc. Phys. Soc. 52, 152–166 (1940)CrossRefGoogle Scholar
  10. 10.
    Zener C.: Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52, 230 (1937)CrossRefGoogle Scholar
  11. 11.
    Nayfeh A.H., Younis M.I.: Modeling and simulations of thermoelastic damping in microplates. J. Micromech. Microeng. 14, 1711–1717 (2004)CrossRefGoogle Scholar
  12. 12.
    Rajagopalan J., Saif M.T.A.: Single degree of freedom model for thermoelastic damping. J. Appl. Mech. Trans. ASME 74, 461–468 (2007)MATHCrossRefGoogle Scholar
  13. 13.
    Guo F.L., Rogerson G.A.: Thermoelastic coupling effect on a micro-machined beam resonator. Mech. Res. Commun. 30, 513–518 (2003)MATHCrossRefGoogle Scholar
  14. 14.
    Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, vol. 7, 3rd edn. Butterworth Heinemann, London (2007)Google Scholar
  15. 15.
    Sun Y., Fang D., Soh A.K.: Thermoelastic damping in micro-beam resonators. Int. J. Solids Struct. 43, 3213–3229 (2006)MATHCrossRefGoogle Scholar
  16. 16.
    Duwel A., Candler R.N., Kenny T.W., Varghese M.A.V.M.: Engineering MEMS resonators with low thermoelastic damping. J. Microelectromech. Syst. 15, 1437–1445 (2006)CrossRefGoogle Scholar
  17. 17.
    Yi Y.-B., Matin M.A.: Eigenvalue solution of thermoelastic damping in beam resonators using a finite element analysis. J. Vib. Acoust. 129, 478–483 (2007)CrossRefGoogle Scholar
  18. 18.
    Koyama, T., Bindel, D.S., Wei, H., Quevy, E.P., Govindjee, S., Demmel, J.W., Howe, R.T.: Simulation tools for damping in high frequency resonators. Presented at fourth IEEE conference on sensors 2005, Irvine, CA, United States, 31 Oct–3 Nov 2005Google Scholar
  19. 19.
    Shaker, F.J.: Efect of Axial load on Mode Shapes and Frequencies of Beams, vol. NASA TN D-8109, NASA, Ed. (1975)Google Scholar
  20. 20.
    Harris, C.M., Piersol, A.G.: Harris’ Shock and Vibration Handbook, 5th edn. McGraw-Hill, New York (2002)Google Scholar
  21. 21.
    Verbridge S.S., Shapiro D.F., Craighead H.G., Parpia J.M.: Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators. Nano Lett. 7, 1728–1735 (2007)CrossRefGoogle Scholar
  22. 22.
    Scott S.V., Jeevak M.P., Robert B.R., Leon M.B., Craighead H.G.: High quality factor resonance at room temperature with nanostrings under high tensile stress. J. Appl. Phys. 99, 124304 (2006)CrossRefGoogle Scholar
  23. 23.
    Kumar S., Haque M.A.: Reduction of thermoelastic damping with a secondary elastic field. J. Sound Vib. 318, 423–427 (2008)CrossRefGoogle Scholar
  24. 24.
    Bokaian A.: Natural frequencies of beams under tensile axial loads. J. Sound Vib. 142, 481–498 (1990)CrossRefGoogle Scholar
  25. 25.
    Mastrangelo C.H., Tai Y.-C., Muller R.S.: Thermophysical properties of low-residual stress, silicon-rich, LPCVD silicon nitride films. Sens. Actuators A Phys. 23, 856–860 (1990)CrossRefGoogle Scholar
  26. 26.
    Xiang Z., Costas P.G.: Thermal conductivity and diffusivity of free-standing silicon nitride thin films. Rev. Sci. Instrum. 66, 1115–1120 (1995)CrossRefGoogle Scholar
  27. 27.
    Wylde, J., Hubbard, T.J.: Elastic properties and vibration of micro-machined structures subject to residual stresses. Presented at electrical and computer engineering, 1999 IEEE Canadian conference (1999)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Mechanical and Nuclear EngineeringPenn State UniversityUniversity ParkUSA

Personalised recommendations