Acta Mechanica

, Volume 213, Issue 1–2, pp 27–38 | Cite as

A thermodynamic framework for a gradient theory of continuum damage



In this paper, we present a formulation of state variable based gradient theory to model damage evolution and alleviate numerical instability associated within the post-bifurcation regime. This proposed theory is developed using basic microforce balance laws and appropriate state variables within a consistent thermodynamic framework. The proposed theory provides a strong coupling and consistent framework to prescribe energy storage and dissipation associated with internal damage. Moreover, the temporal evolution equation derived here naturally shows the effect of damage—nucleation, growth and coalescence. In addition, the theoretical framework presented here is easily extendable to the addition of other defects (not shown here), and can be generalized to the development of consistent coupled transport equations for species, such as hydrogen (Bammann et al. in JMPS, 2009, submitted), as well as providing a consistent structure for modeling events at diverse length scales.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bammann, D.J., Novak, P., Sofronis, P., Somerday, B.: A coupled dislocation-hydrogen based model of inelastic deformation of metals and alloys. JMPS (2009, submitted)Google Scholar
  2. 2.
    Cosserat E., Cosserat F.: Theorie des corps deformables. Hermann et Fils, Paris (1909)Google Scholar
  3. 3.
    Dillon O.W., Kratochvil J.: A strain gradient theory of plasticity. Int. J. Solids Struct. 6, 1533–1566 (1970)Google Scholar
  4. 4.
    Nunziato J.W., Cowin S.C.: Non-linear theory of elastic-materials with voids. Arch. Ration. Mech. Anal. 72(2), 175–201 (1979)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bammann, D.J., Aifantis, E.C.: On the perfect lattice-dislocated state interaction. In: Selvadurai, A.P.S. (ed.) Mechanics of Structured Media. In: Proceedings of the International Symposium on the Mechanical Behaviour of Structured Media, Ottawa, pp. 79–91 (1981)Google Scholar
  6. 6.
    Bammann D.J., Aifantis E.C.: On a proposal for a continuum with microstructure. Acta Mech. 45(1–2), 91–121 (1982)MATHCrossRefGoogle Scholar
  7. 7.
    Aifantis E.C.: On the microstructural origin of certain inelastic models. Trans. ASME J. Eng. Mater. Technol. 95, 215–229 (1984)Google Scholar
  8. 8.
    Bammann D.J.: An internal variable model of visco-plasticity. Int. J. Eng. Sci. 22, 1041–1053 (1984)MATHCrossRefGoogle Scholar
  9. 9.
    Brown S.B., Kim K.H., Anand L.: An internal variable constitutive model for hot-working of metals. Int. J. Plast. 5(2), 95–130 (1989)MATHCrossRefGoogle Scholar
  10. 10.
    McDowell D.L.: A bounding surface theory for cyclic thermoplasticity. J. Eng. Mater. Technol. Trans. ASME 114(3), 297–303 (1992)CrossRefGoogle Scholar
  11. 11.
    Zbib H.M., Aifantis E.C.: On the gradient-dependent theory of plasticity and shear banding. Acta Mech. 92, 209–225 (1992)MATHCrossRefGoogle Scholar
  12. 12.
    Fleck N.A., Hutchinson J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 30, 1825–1857 (1993)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Tvergaard V., Needleman A.: Effects of nonlocal damage in porous plastic solids. Int. J. Solids Struct. 32(8–9), 1063–1077 (1995)MATHCrossRefGoogle Scholar
  14. 14.
    Gurtin M.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Nix W.D., Gao H.J.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)MATHCrossRefGoogle Scholar
  16. 16.
    Ramaswamy S., Aravas N.: Finite-element implementation of gradient plasticity models: Part I: gradient-dependent yield functions. Comput. Methods Appl. Mech. Eng. 163(1–4), 11–32 (1998)MATHCrossRefGoogle Scholar
  17. 17.
    Gurtin M.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. JMPS 48, 989–1036 (2000)MATHMathSciNetGoogle Scholar
  18. 18.
    Regueiro R.A., Bammann D.J., Marin E.B., Garikipati V.: A nonlocal phenomenological anisotropic finite deformation plasticity model accounting for dislocation defects. J. Eng. Mater. Technol. Trans. ASME 124, 380–387 (2002)CrossRefGoogle Scholar
  19. 19.
    Hutchinson J.W.: Plasticity at the micron scale. Int. J. Solids Struct. 37, 225–238 (2000)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Clayton J.D., McDowell D.L, Bammann D.J.: A multiscale gradient theory for single crystalline elastoviscoplasticity. Int. J. Eng. Sci. 42, 427–457 (2004)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Bammann, D.J., Solanki, K.N.: On kinematic, thermodynamic and coupling of a damage theory for polycrystalline material. IJP (2009, submitted)Google Scholar
  22. 22.
    Coleman B.D., Noll W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Fried E., Gurtin M.E.: Continuum theory of thermally induced phase transitions based on an order parameter. Physica D 68, 326–343 (1993)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kachanov M.: Time of the rupture process under creep conditions. Izv. Akad. Nauk. USSR Otdelenie Tech. Nauk 8, 26–31 (1958)Google Scholar
  25. 25.
    Bammann D.J.: A model of crystal plasticity containing a natural length scale. Math. Sci. Eng. A309–A310, 406–410 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Center for Advanced Vehicular SystemsStarkvilleUSA
  2. 2.Mechanical Engineering DepartmentMississippi State UniversityMississippi StateUSA

Personalised recommendations