Advertisement

Acta Mechanica

, Volume 205, Issue 1–4, pp 51–75 | Cite as

On the small-defect perturbation and sampling of heterogeneous solids

  • Bojan B. Guzina
  • Huina Yuan
Article

Abstract

This paper aims to extend the application of topological sensitivity, developed for elastic-wave imaging of defects in a homogeneous background medium, to the class of heterogeneous (background) bodies with piecewise-analytic viscoelastic and mass density coefficients. Founded on the premise of time-harmonic wave propagation, the approach employs dimensional analysis to formally establish the expected, yet previously unavailable result wherein the leading behavior of the scattered field caused by a vanishing inclusion is governed by (1) the illuminating visco-elastodynamic field and its adjoint companion, both computed for the background body, at the sampling point; (2) the geometry and material properties of the vanishing defect, and (3) local properties of the (heterogeneous) background solid at the sampling point. By virtue of this result, an explicit formula for the topological sensitivity is obtained by an asymptotic expansion of a misfit-type cost functional with respect to the nucleation of a trial inclusion in the given background, i.e. reference solid. Through numerical examples, it is shown that such defined sensitivity provides a computationally effective platform for preliminary sounding of heterogeneous solids by viscoelastic waves. This is accomplished by computing the topological sensitivity over an arbitrary grid of sampling points inside the reference solid, and identifying those regions where the topological sensitivity attains pronounced negative values with the support of a hidden defect (or a set thereof). The results further highlight the potential of topological sensitivity to expose not only the geometry, but also the nature of internal defects through a local, point-wise identification of “optimal” inclusion properties that minimize the topological sensitivity at a given sampling location.

Keywords

Inverse Scattering Internal Defect Topological Derivative Reference Domain Reference Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammari H., Kang H.: Reconstruction of the Small Inhomogeneities from Boundary Measurements. Springer, Berlin (2004)Google Scholar
  2. 2.
    Ammari H., Kang H., Nakamura G., Tanuma K.: Complete asymptotic expansion of the solutions of the system of the elastostatics in the presence of an inclusion of the small diameter and detection of the inclusion. J. Elast. 67(2), 97–129 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Barenblatt G.I.: Scaling. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  4. 4.
    Bonnet M.: Topological sensitivity for 3D elastodynamics and acoustic inverse scattering in the time domain. Comp. Methods Appl. Mech. Eng. 195, 5239–5254 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bonnet M.: Inverse acoustic scattering by small-obstacle expansion of a misfit function. Inverse Probl. 24, 035022 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bonnet M., Guzina B.: Elastic-wave identification of penetrable obstacles using shape-material sensitivity framework. J. Comput. Phys. 228, 294–311 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bonnet M., Guzina B.B.: Topological derivative for the inverse scattering of elastic waves. Int. J. Numer. Methods Eng. 57, 161–179 (2004)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cakoni F., Colton D.: Qualitative Methods in Inverse Scattering Theory. Springer, Berlin (2006)zbMATHGoogle Scholar
  9. 9.
    Carpio A., Rapun M.L.: Solving inhomogeneous inverse problems by topological derivative methods. Inverse Probl. 24, 045014 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Charalambopoulos A., Gintides D., Kiriaki K.: The linear sampling method for the transmission problem in three-dimensional linear elasticity. Inverse probl. 18, 547–558 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Cheney M., Isaacson D., Newell J.C.: Electrical impedance tomography. SIAM Rev. 41(1), 85–101 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Chikichev I., Guzina B.B.: Generalized topological derivative for the navier equation and inverse scattering in the time domain. Comp. Methods Appl. Mech. Eng. 197, 4467–4484 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Colton D., Coyle J., Monk P.: Recent developments in inverse acoustic scattering theory. SIAM Rev. 42, 369–414 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Colton D., Kirsch A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Probl. 12, 383–393 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Colton D., Kress R.: Integral Equation Method in Scattering Theory. Wiley, New York (1983)Google Scholar
  16. 16.
    Colton D., Kress R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, New York (1997)Google Scholar
  17. 17.
    Colton D., Monk P.: Linear sampling method for the detection of leukemia using microwaves. SIAM J. Appl. Math. 58, 926–941 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Dominguez N., Gibiat V., Esquerre Y.: Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection. Wave Motion 42, 31–52 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Dorn O., Lesselier D.: Level set methods for inverse scattering. Inverse Probl. 22, R67–R131 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Doyley M.M., Van Houten E.E., Weaver J.B., Poplack S., Duncan L., Kennedy K.D., Paulsen F.: Shear modulus estimation using parallelized partial reconstruction. IEEE Trans. Med. Imag. 23, 1404–1416 (2004)CrossRefGoogle Scholar
  21. 21.
    Edgar G.A.: Measure, Topology, and Fractal Geometry. Springer, New York (1990)zbMATHGoogle Scholar
  22. 22.
    Eschenauer H.A., Kobelev V.V., Schumacher A.: Bubble method for topology and shape optimization of structures. Struct. Optim. 8, 42–51 (1994)CrossRefGoogle Scholar
  23. 23.
    Feijoo G.R.: A new method in inverse scattering based on the topological derivative. Inverse Probl. 20, 1819–1840 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Gallego R., Rus G.: Identification of cracks and cavities using the topological sensitivity boundary integral equation. Comput. Mech. 33, 154–163 (2004)zbMATHCrossRefGoogle Scholar
  25. 25.
    Garreau S., Guillaume P., Masmoudi M.: The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39, 1756–1778 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Guzina B.B., Bonnet M.: Topological derivative for the inverse scattering of elastic waves. Quart. J. Mech. Appl. Math. 57, 161–179 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Guzina B.B., Bonnet M.: Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics. Inverse Probl. 22, 1761–1785 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Guzina B.B., Chikichev I.: From imaging to material identification; a generalized concept of topological sensitivity. J. Mech. Phys. Solids 55, 245–279 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Guzina B.B., Pak R.Y.S., Martinez-Castro A.E.: Singular boundary elements for three-dimensional elasticity problems. Eng. Anal. Bound. Elem. 30, 623–639 (2006)zbMATHCrossRefGoogle Scholar
  30. 30.
    Litman A., Lesselier D., Santosa F.: Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set. Inverse Probl. 14, 685–706 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Malcolm A., Guzina B.B.: On the topological sensitivity of transient acoustic fields. Wave Motion 45, 821–834 (2008)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Malvern L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs (1969)Google Scholar
  33. 33.
    Masmoudi M., Pommier J., Samet B.: The topological asymptotic expansion for the maxwell equations and some applications. Inverse Probl. 21, 547–564 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    McLean W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  35. 35.
    Mueller J.L., Siltanen S.: Direct reconstructions of conductivities from boundary measurements. SIAM J. Sci. Comput. 24(4), 1232–1266 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Mura T.: Micromechanics of Defects in Solids. Martinus Nijhoff Publishers, Boston (1987)CrossRefGoogle Scholar
  37. 37.
    Nakamura G., Tanuma K.: A formula for the fundamental solution of anisotropic elasticity. Quart. J. Mech. Appl. Math. 50, 179–194 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Fata S.N., Guzina B.B.: A linear sampling method for near-field inverse problems in elastodynamics. Inverse Probl. 20, 713–736 (2004)zbMATHCrossRefGoogle Scholar
  39. 39.
    Pak R.Y.S., Guzina B.B.: Seismic soil-tructure interaction analysis by direct boundary element methods. Int. J. Solids Struct. 26, 4743–4766 (1999)CrossRefGoogle Scholar
  40. 40.
    Pike, R., Sabatier, P. editors.: Scattering: Sattering and Inverse Scattering in Pure and Applied Science, vols. 1 and 2. Academic Press, San Diego (2002)Google Scholar
  41. 41.
    Potthast R.: Point Sources and Multipoles in Inverse Scattering Theory. Chapman and Hal/CRC, New York (2001)zbMATHCrossRefGoogle Scholar
  42. 42.
    Potthast R.: A survey on sampling and probe methods for inverse problems. Inverse Probl. 22, R1–R47 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Schumacher, A.: Topologieoptimierung von Bauteilstrukturen unter Verwendung von Lochpositionierungskriterien. Ph.D. thesis, University of Siegen, Germany (1995)Google Scholar
  44. 44.
    Sokolowski J., Zochowski A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37, 1251–1272 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Sumbatyan M.A.: La method of global random search in inverse problems with application to image defect reconstruction. Prikladnaya Matematika i Mekhanika 56, 873–876 (1992)MathSciNetGoogle Scholar
  46. 46.
    Tarantola A.: Linearized inversion of seismic reflection data. Geophys. Prospect. 32, 998–1015 (1984)CrossRefGoogle Scholar
  47. 47.
    Tarantola A.: A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics 51, 1893–1903 (1986)CrossRefGoogle Scholar
  48. 48.
    Vladimirov, V.S.: Generalized functions in mathematical physics. Nauka, Moscow, 1979 (in Russian)Google Scholar
  49. 49.
    Vogelius M.S., Cedio-Fengya D.J., Moskow S.: Identification of conductivity imperfections of small diameter by boundary measurements: continuous dependence and computational reconstruction. Inverse Probl. 14, 553–595 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Zakovic S., Ulanowski Z., Bartholomew-Biggs M.C.: Application of global optimization to particle identification using light scattering. Inverse Probl. 14, 1053–1067 (1998)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations