Acta Mechanica

, Volume 205, Issue 1–4, pp 9–21

Failure of cemented granular materials under simple compression: experiments and numerical simulations

Article

Abstract

We investigate the strength and failure properties of a model cemented granular material under simple compressive deformation. The particles are lightweight expanded clay aggregate beads coated by a controlled volume fraction of silicone. The beads are mixed with a joint seal paste (the matrix) and molded to obtain dense cemented granular samples of cylindrical shape. Several samples are prepared for different volume fractions of the matrix, controlling the porosity, and silicone coating upon which depends the effective particle–matrix adhesion. Interestingly, the compressive strength is found to be an affine function of the product of the matrix volume fraction and effective particle–matrix adhesion. On the other hand, it is shown that particle damage occurs beyond a critical value of the contact debonding energy. The experiments suggest three regimes of crack propagation corresponding to no particle damage, particle abrasion and particle fragmentation, respectively, depending on the matrix volume fraction and effective particle–matrix adhesion. We also use a sub-particle lattice discretization method to simulate cemented granular materials in two dimensions. The numerical results for crack regimes and the compressive strength are in excellent agreement with the experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benhamida A., Bouchelaghem F., Dumontet H.: Effective properties of a cemented or an injected granular material. Int. J. Numer. Anal. Methods Geomech. 29, 187–208 (2005)MATHCrossRefGoogle Scholar
  2. 2.
    Buyukozturk O., Hearing B.: Crack propagation in concrete composites influenced by interface fracture parameters. Int. J. Solids Struct. 35(31–32), 4055–4066 (1998)CrossRefGoogle Scholar
  3. 3.
    Castellanos A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54(114), 263–376 (2005)CrossRefGoogle Scholar
  4. 4.
    Chiaia B.M., Vervuurt A., Van Mier J.G.M.: Lattice model evaluation of progressive failure in disordered particle composites. Eng. Fract. Mech. 57(2–3), 301–309 (1997)CrossRefGoogle Scholar
  5. 5.
    de Larrard F., Belloc A.: The influence of aggregate on the compressive strength of normal and high-strength concrete. ACI Mater. J. 94, 417–426 (1997)Google Scholar
  6. 6.
    Delaplace A., Pijaudier-Cabot G., Roux S.: Progressive damage in discrete models and consequences on continuum modelling. J. Mech. Phys. Solids 44(1), 99–136 (1996)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Delenne J.-Y., El Youssoufi M.S., Cherblanc F., Benet J.-C.: Mechanical behaviour and failure of cohesive granular materials. Int. J. Numer. Anal. Methods Geomech. 28(15), 1577–1594 (2004)MATHCrossRefGoogle Scholar
  8. 8.
    Delenne J.Y., Haddad Y., Benet J.C., Abecassis J.: Use of mechanics of cohesive granular media for analysis of hardness and vitreousness of wheat endosperm. J. Cereal Sci. 47(3), 438–444 (2008)CrossRefGoogle Scholar
  9. 9.
    El Youssoufi M.S., Delenne J.-Y., Radjaï F.: Self-stresses and crack formation by particle swelling in cohesive granular media. Phys. Rev. E 71, 051307 (2005)CrossRefGoogle Scholar
  10. 10.
    Elata D., Dvorkin J.: Pressure sensitivity of cemented granular materials. Mech. Mater. 23(2), 147–154 (1996)CrossRefGoogle Scholar
  11. 11.
    Fitoussi J., Guo G., Baptiste D.: A statistical micromechanical model of anisotropic damage for s.m.c. composites. Compos. Sci. Technol. 58(5), 759–763 (1998)CrossRefGoogle Scholar
  12. 12.
    Goddard J.D.: Microstructural origins of continuum stress fields—a brief history and some unresolved issues. In: DeKee, D., Kaloni, P.N. (eds.) Recent Developments in Structured Continua. Pitman Research Notes in Mathematics No. 143, p 179. Longman, J. Wiley, New York (1986)Google Scholar
  13. 13.
    He M.-Y., Hutchinson J.W.: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25(9), 1053–1067 (1989)CrossRefGoogle Scholar
  14. 14.
    Herrmann, H.J., Roux, S. (eds): Statistical Models for Fracture in Disordered Media. North Holland, Amsterdam (1990)Google Scholar
  15. 15.
    Johnson K.L.: Contact Mechanics. University Press, Cambridge (1999)Google Scholar
  16. 16.
    Kendall K., Alford N.McN., Birchall J.D.: The strength of green bodies. Br. Ceram. Proc. 37, 255–265 (1986)Google Scholar
  17. 17.
    Liu, A.J., Nagel, S.R. (eds): Jamming and Rheology. Taylor & Francis, New York (2001)Google Scholar
  18. 18.
    Merchant I.J., Macphee D.E., Chandler H.W., Henderson R.J.: Toughening cement-based materials through the control of interfacial bonding. Cement Concrete Res. 31(12), 1873–1880 (2001)CrossRefGoogle Scholar
  19. 19.
    Mishnaevsky L. Jr, Derrien K., Baptiste D.: Effect of microstructure of particle reinforced composites on the damage evolution: probabilistic and numerical analysis. Compos. Sci. Technol. 64(12), 1805–1818 (2004)CrossRefGoogle Scholar
  20. 20.
    Morris C.F.: Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol. Biol. 48, 633–647 (2002)CrossRefGoogle Scholar
  21. 21.
    Nadot-Martin C., Trumel H., Dragon A.: Morphology-based homogenization for viscoelastic particulate composites: Part I: Viscoelasticity sole. Eur. J. Mech. A Solids 22(1), 89–106 (2003)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Ouadfel H., Rothenburg L.: Stress–force–fabric relationship for assemblies of ellipsoids. Mech. Mater. 33(4), 201–221 (2001)CrossRefGoogle Scholar
  23. 23.
    Radjaï F., Preechawuttipong I., Peyroux R.: Cohesive granular texture. In: Vermeer, P.A., Diebels, S., Ehlers, W., Herrmann, H.J., Luding, S., Ramm, E. (eds) Continuous and Discontinuous Modelling of Cohesive Frictional Materials, pp. 148–159. Springer, Berlin (2000)Google Scholar
  24. 24.
    Richefeu V., El Youssoufi M.S., Radjai F.: Shear strength properties of wet granular materials. Phys. Rev. E Stat. Nonlinear Soft Matter Phys.) 73(5), 051304 (2006)CrossRefGoogle Scholar
  25. 25.
    Roux, S.: Statistical models for fracture in disordered media. In: Continuum and Discrete Description Of Elasticity and Other Rheological Behavior. pp. 87–114. North Holland, Amsterdam (1990)Google Scholar
  26. 26.
    Sahimi M.: Heterogeneous Materials II. Springer, New York (2003)MATHGoogle Scholar
  27. 27.
    Schlangen E., van Mier J.G.M.: Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cement Concrete Compos. 14(2), 105–118 (1992)CrossRefGoogle Scholar
  28. 28.
    Sienkiewicz F., Shukla A., Sadd M., Zhang Z., Dvorkin J.: A combined experimental and numerical scheme for the determination of contact loads between cemented particles. Mech. Mater. 22(1), 43–50 (1996)CrossRefGoogle Scholar
  29. 29.
    Tan H., Huang Y., Liu C., Geubelle P.H.: The mori-tanaka method for composite materials with nonlinear interface debonding. Int. J. Plast. 21(10), 1890–1918 (2005)MATHCrossRefGoogle Scholar
  30. 30.
    Tan H., Huang Y., Liu C., Ravichandran G., Inglis H.M., Geubelle P.H.: The uniaxial tension of particulate composite materials with nonlinear interface debonding. Int. J. Solids Struct. 44(6), 1809–1822 (2007)MATHCrossRefGoogle Scholar
  31. 31.
    Tarbuck E.J., Lutgens F.K.: Earth—An Introduction to Physical Geology. Pearson Education, New Jersey (2005)Google Scholar
  32. 32.
    Topin V., Delenne J.-Y., Radjai F., Brendel L., Mabille F.: Strength and fracture of cemented granular matter. Eur. Phys. J. E 23, 413–429 (2007)CrossRefGoogle Scholar
  33. 33.
    Topin V., Radjai F., Delenne J.-Y., Mabille F.: Mechanical modeling of wheat hardness and fragmentation. Powder Technol. 190(1–2), 215–220 (2009)CrossRefGoogle Scholar
  34. 34.
    Topin V., Radjai F., Delenne J.-Y., Sadoudi A., Mabille F.: Wheat endosperm as a cohesive granular material. J. Cereal Sci. 47(2), 347–356 (2008)CrossRefGoogle Scholar
  35. 35.
    Troadec H., Radjai F., Roux S., Charmet J.C.: Model for granular texture with steric exclusion. Phys. Rev. E 66(41), 041305-1 (2002)Google Scholar
  36. 36.
    Turnbull K.M., Rahman S.: Endosperm texture in wheat. J. Cereal Sci. 36(3), 327–337 (2002)CrossRefGoogle Scholar
  37. 37.
    Van Mier J.G.M., Chiaia B.M., Vervuurt A.: Numerical simulation of chaotic and self-organizing damage in brittle disordered materials. Comput. Methods Appl. Mech. Eng. 142(1–2), 189–201 (1997)MATHCrossRefGoogle Scholar
  38. 38.
    Voivret C., Radjai F., Delenne J.-Y., El Youssoufi M.S.: Space-filling properties of polydisperse granular media. Phys. Rev. E 76(2), 021301–021312 (2007)CrossRefGoogle Scholar
  39. 39.
    Zhonghua L., Schmauder S.: Phase-stress partition and residual stress in metal matrix composites. Comput. Mater. Sci. 18(3–4), 295–302 (2000)CrossRefGoogle Scholar
  40. 40.
    Zhou C.W., Yang W., Fang D.N.: Mesofracture of metal matrix composites reinforced by particles of large volume fraction. Theor. Appl. Fract. Mech. 41(1–3), 311–326 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.LMGC, UMR 5508 CNRS, Université Montpellier 2Montpellier Cedex 5France
  2. 2.MIST, IRSN CNRS, DPAMMontpellier Cedex 5France
  3. 3.IATE, CNRS, INRAMontpellier Cedex 1France

Personalised recommendations