Acta Mechanica

, 201:105 | Cite as

The role of air entrainment on the outcome of drop impact on a solid surface

  • Martin ReinEmail author
  • Jean-Pierre Delplanque


The characteristic conditions causing spreading or splashing after drop impact on solid surfaces are considered together with the underlying mechanisms. To this end, the results of the various studies published over the past few years that have addressed the issue of splashing after droplet impact, specifically in terms of the definition of a splashing threshold, are critically compared and synthesized. The discussion aims at clarifying some of the conflicting findings. Information drawn from these considerations is used to distinguish between various splashing thresholds and it is shown that there exists a distinct difference between splashing on smooth and on rough surfaces, both in terms of the splashing thresholds and in terms of the mechanisms. Finally, a physical mechanism akin to air entrainment in dynamic wetting is proposed that may be of primary importance for the inception of splashing as well as fingering on smooth surfaces.


Contact Line Critical Velocity Capillary Number Dynamic Contact Angle Liquid Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Armster S.Q., Delplanque J.-P., Rein M., Lavernia E.J.: Thermo-fluid mechanisms controlling droplet based materials processes. Int. Mater. Rev. 47, 265–301 (2002)Google Scholar
  2. 2.
    Berg T.D., Clarke A., Ruschak K.J.: Hydrodynamic assist of dynamic wetting. AIChE J. 40, 229–242 (1994)CrossRefGoogle Scholar
  3. 3.
    Blake T.D., Ruschak K.J.: A maximum speed of wetting. Nature 282, 489–491 (1979)CrossRefGoogle Scholar
  4. 4.
    Clarke A.: Coating on a rough surface. AIChE J. 48, 2149–2156 (2002)CrossRefGoogle Scholar
  5. 5.
    Cohu O., Benkreira H.: Air entrainment in angled dip coating. Chem. Eng. Sci. 53, 533–540 (1998)CrossRefGoogle Scholar
  6. 6.
    Cossali G.E., Coghe A., Marengo M.: The impact of a single drop on a wetted surface. Exp. Fluids 22, 463–472 (1997)CrossRefGoogle Scholar
  7. 7.
    Hardalupas Y., Taylor A.M.K.P., Wilkins J.H.: Experimental investigation of sub-millimetre droplet impingement onto spherical surfaces. Int. J. Heat Fluid Flow 20, 477–485 (1999)CrossRefGoogle Scholar
  8. 8.
    Kistler S.F.: Hydrodynamics of wetting. In: Berg, J.C. (eds) Wettability, pp. 311–349. Marcel Dekker, New York (1993)Google Scholar
  9. 9.
    Levin Z., Hobbs P.V.: Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation. Phil. Trans. R. Soc. Lond. A 269, 555–585 (1971)CrossRefGoogle Scholar
  10. 10.
    Lindner-Silvester T., Schneider W.: The moving contact line with weak viscosity effects—an application and evaluation of Shikhmurzaev’s model. Acta Mech. 176, 245–258 (2005)CrossRefGoogle Scholar
  11. 11.
    Loehr, K.F.: Etalement et eclatement de gouttes. Ph.D. Thesis, Université Pierre et Marie Curie, Paris (1990)Google Scholar
  12. 12.
    Mundo Chr., Sommerfeld M., Tropea C.: Droplet-wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiphase Flow 21, 151–173 (1995)zbMATHCrossRefGoogle Scholar
  13. 13.
    Range K., Feuillebois F.: Influence of surface roughness on liquid drop impact. J. Colloid Interface Sci. 203, 16–30 (1998)CrossRefGoogle Scholar
  14. 14.
    Rein M.: Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 61–93 (1993)CrossRefGoogle Scholar
  15. 15.
    Rioboo R., Tropea C., Marengo M.: Outcomes from a drop impact on solid surfaces. Atomization Sprays 11, 155–165 (2001)Google Scholar
  16. 16.
    Rioboo R., Marengo M., Tropea C.: Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33, 112–124 (2002)Google Scholar
  17. 17.
    Roisman I.V., Horvat K., Tropea C.: Spray impact: rim transverse instability initiating fingering and splash, and description of a secondary spray. Phys. Fluids 18(102104), 1–19 (2006)MathSciNetGoogle Scholar
  18. 18.
    Schmidt P., Knauss G.: Prallzerstäubung von Flüssigkeiten bei Nichtbenetzung. Chem. Ing. Tech. 48, 659 (1976)CrossRefGoogle Scholar
  19. 19.
    Shikhmurzaev Y.D.: The moving contact line on a smooth solid surface. Int. J. Multiphase Flow 19, 589–610 (1993)zbMATHCrossRefGoogle Scholar
  20. 20.
    Stow C.D., Hadfield M.G.: An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. Lond. A 373, 419–441 (1981)CrossRefGoogle Scholar
  21. 21.
    Thoroddsen S.T., Sakakibara J.: Evolution of the fingering pattern of an impacting drop. Phys. Fluids 10, 1359–1374 (1998)CrossRefGoogle Scholar
  22. 22.
    Vander Wal R.L., Berger B.M., Mozes S.D.: The combined influence of a rough surface and thin fluid film upon the splashing threshold and splash dynamics of a droplet impacting onto them. Exp. Fluids 40, 53–59 (2006)CrossRefGoogle Scholar
  23. 23.
    Vander Wal R.L., Berger B.M., Mozes S.D.: The splash/non-splash boundary upon a dry surface and thin fluid film. Exp. Fluids 40, 23–32 (2006b)CrossRefGoogle Scholar
  24. 24.
    Walzel P.: Zerteilgrenze beim Tropfenaufprall. Chem. Ing. Tech. 52, 338–339 (1980)CrossRefGoogle Scholar
  25. 25.
    Weiss D.A., Yarin A.L.: Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment and crown formation. J. Fluid Mech. 385, 229–254 (1999)zbMATHCrossRefGoogle Scholar
  26. 26.
    Wilson S.D.R.: The slow dripping of a viscous fluid. J. Fluid Mech. 190, 561–570 (1988)zbMATHCrossRefGoogle Scholar
  27. 27.
    Worthington A.M.: On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25, 261–272 (1876)CrossRefGoogle Scholar
  28. 28.
    Worthington A.M.: A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25, 498–503 (1876)CrossRefGoogle Scholar
  29. 29.
    Xu L., Zhang W.W., Nagel S.R.: Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94(184505), 1–4 (2005)Google Scholar
  30. 30.
    Xu L.: drop splashing on smooth, rough and textured surfaces. Phys. Rev. E 75(056316), 1–8 (2007)Google Scholar
  31. 31.
    Xu L., Barcos L., Nagel S.R.: Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. E 76(066311), 1–5 (2007)zbMATHGoogle Scholar
  32. 32.
    Yarin A.L.: Drop impact dynamics: splashing, spreading, receding, bouncing, .... Annu. Rev. Fluid Mech. 38, 159–192 (2006)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Yarin A.L., Weiss D.A.: Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141–173 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Aerodynamics and Flow Technology, German Aerospace CenterGöttingenGermany
  2. 2.Department of Mechanical and Aeronautical EngineeringUniversity of California, DavisDavisUSA

Personalised recommendations