Acta Mechanica

, Volume 201, Issue 1–4, pp 277–296 | Cite as

Appraisal of energy recovering sub-grid scale models for large-eddy simulation of turbulent dispersed flows

  • Cristian Marchioli
  • Maria Vittoria Salvetti
  • Alfredo Soldati
Article

Abstract

Current capabilities of Large-Eddy Simulation (LES) in Eulerian–Lagrangian studies of dispersed flows are limited by the modeling of the Sub-Grid Scale (SGS) turbulence effects on particle dynamics. These effects should be taken into account in order to reproduce accurately the physics of particle dispersion since the LES cut-off filter removes both energy and flow structures from the turbulent flow field. In this paper, we examine the possibility of including explicitly SGS effects by incorporating ad hoc closure models in the Lagrangian equations of particle motion. Specifically, we consider candidate models based on fractal interpolation and approximate deconvolution techniques. Results show that, even when closure models are able to recover the fraction of SGS turbulent kinetic energy for the fluid velocity field (not resolved in LES), prediction of local segregation and, in turn, of near-wall accumulation may still be inaccurate. This failure indicates that reconstructing the correct amount of fluid and particle velocity fluctuations is not enough to reproduce the effect of SGS turbulence on particle near-wall accumulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang L.P., Riley M.R.: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27–68 (1993)CrossRefGoogle Scholar
  2. 2.
    Bec J., Biferale L., Cencini M., Lanotte A., Musacchio S., Toschi F.: Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98, 084502 (2007)CrossRefGoogle Scholar
  3. 3.
    Eaton J.K., Fessler J.R.: Preferential concentration of particles by turbulence. Int. J. Multiphase Flow 20, 169–209 (1994)MATHCrossRefGoogle Scholar
  4. 4.
    Rouson D.W., Eaton J.K.: On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149–169 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Brooke J.W., Kontomaris K., Hanratty T.J., McLaughlin J.B.: Turbulent deposition and trapping of aerosols at a wall. Phys. Fluids A 4, 825–834 (1992)CrossRefGoogle Scholar
  6. 6.
    Marchioli C., Soldati A.: Mechanisms for particle transfer and segregation in turbulent boundary layer. J. Fluid Mech. 468, 283–315 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    García M., Lopez F., Niño Y.: Characterization of near-bed coherent structures in turbulent open channel flow using synchronized high-speed video and hot-film measurements. Exp. Fluids 19, 16–28 (1995)CrossRefGoogle Scholar
  8. 8.
    Kaftori D., Hetsroni G., Banerjee S.: Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment. Phys. Fluids 7, 1095–1106 (1995)CrossRefGoogle Scholar
  9. 9.
    Adrian R.J.: Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301 (2007)CrossRefGoogle Scholar
  10. 10.
    Soldati A.: Particles turbulence interactions in boundary layers. Z. Angew. Math. Mech. 85, 683–699 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Caporaloni M., Tampieri F., Trombetti F., Vittori O.: Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32, 565–568 (1975)CrossRefGoogle Scholar
  12. 12.
    Reeks M.W.: The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14, 729–739 (1983)CrossRefGoogle Scholar
  13. 13.
    Young J.B., Hanratty T.J.: Optical studies on the turbulent motion of solid particles in a pipe flow. J. Fluid Mech. 231, 665–668 (1991)MATHCrossRefGoogle Scholar
  14. 14.
    Marchioli C., Salvetti M.V., Soldati A.: Some issues concerning Large-Eddy Simulation of inertial particle dispersion in turbulent bounded flows. Phys. Fluids 20, 040603 (2008)CrossRefGoogle Scholar
  15. 15.
    Février P., Simonin O., Squires K.D.: Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially-uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533, 1–46 (2005)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kuerten J.G.M.: Subgrid modeling in particle-laden channel flow. Phys. Fluids 18, 025108 (2006)CrossRefGoogle Scholar
  17. 17.
    Kuerten J.G.M., Vreman A.W.: Can turbophoresis be predicted by large-eddy simulation?. Phys. Fluids 17, 011701 (2005)CrossRefGoogle Scholar
  18. 18.
    Wang Q., Squires K.D.: Large eddy simulation of particle deposition in a vertical turbulent channel flow. Int. J. Multiphase Flow 22, 667–683 (1996)MATHCrossRefGoogle Scholar
  19. 19.
    Tian L., Ahmadi G.: Particle deposition in turbulent duct flows—comparisons of different model predictions. J. Aerosol Sci. 38, 377–397 (2007)CrossRefGoogle Scholar
  20. 20.
    Marchioli C., Giusti A., Salvetti M.V., Soldati A.: Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow. Int. J. Multiphase Flow 29, 1017–1038 (2003)MATHCrossRefGoogle Scholar
  21. 21.
    Uijttewaal W.S.J., Oliemans R.W.A.: Particle dispersion and deposition in direct numerical and large eddy simulations of vertical pipe flows. Phys. Fluids 8, 2590–2604 (1996)MATHCrossRefGoogle Scholar
  22. 22.
    Fede P., Simonin O.: Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys. Fluids 18, 045103 (2006)CrossRefGoogle Scholar
  23. 23.
    Reza Keshevarzi A., Nagi Ziaei A., Homayoun E., Shirvani A.: Fractal-Markovian scaling of turbulent bursting processes in open channel flows. Chaos Solitons Fractals 25, 307–318 (2005)CrossRefGoogle Scholar
  24. 24.
    Scotti A., Meneveau C.: A fractal model for large eddy simulation of turbulent flow. Phys. D 127, 198–232 (1999)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Shotorban B., Mashayek F.: Modeling subgrid-scale effetcs on particles by approximate deconvolution. Phys. Fluids 17, 081701 (2005)CrossRefGoogle Scholar
  26. 26.
    Shotorban B., Zhang K.K.Q., Mashayek F.: Improvement of particle concentration prediction by defiltering. Int. J. Heat Mass Tran. 50, 3728–3739 (2007)MATHCrossRefGoogle Scholar
  27. 27.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3, 1760–1765 (1991), Erratum, Phys. Fluids 3, 3128 (1991)Google Scholar
  28. 28.
    Elghobashi S.E., Truesdell G.C.: Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655–700 (1992)CrossRefGoogle Scholar
  29. 29.
    Crowe C., Sommerfeld M., Tsuji T.: Multiphase Flows with Droplets and Particles. CRC Press, New York (1998)Google Scholar
  30. 30.
    Lam K., Banerjee S.: Streak formation in a bounded turbulent-flow. Phys. Fluids A 4, 306–326 (1992)MATHCrossRefGoogle Scholar
  31. 31.
    Soldati A., Banerjee S.: Turbulence modification by large-scale organized electrohydrodynamic flows. Phys. Fluids 10, 1742–1756 (1998)CrossRefGoogle Scholar
  32. 32.
    Marchioli C., Picciotto M., Soldati A.: Particle dispersion and wall-dependent fluid scales in turbulent bounded flow: implications for local equilibrium models. J. Turbulence 27, 1–11 (2006)CrossRefGoogle Scholar
  33. 33.
    Marchioli, C., Soldati, A., Kuerten, J.G.M., Arcen, B., Tanière, A., Goldensoph, G., Squires, K.D., Cargnelutti, M.F., Portela, L.M.: Statistics of particle dispersion in Direct Numerical Simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Int. J. Multiphase Flow 34 (2008). doi: 10.1016/j.ijmultiphaseflow.2008.01.009
  34. 34.
    Salvetti M.V., Marchioli C., Soldati A.: On the closure of particle motion equations in large-eddy simulation. In: Lamballais, E., Friedrich, R., Geurts, B.J., Metais, O.(eds) Direct and Large-Eddy Simulation, vol. 6, pp. 311–318. Springer, Netherlands (2006)CrossRefGoogle Scholar
  35. 35.
    Stolz P., Adams N.A., Kleiser L.: An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13, 997–1015 (2001)CrossRefGoogle Scholar
  36. 36.
    Cousins, L.B., Hewitt, G.F.: Liquid phase mass transfer in annular two-phase flow. UKAEA Report, AERE-R 5657 (1968)Google Scholar
  37. 37.
    Guingo M., Minier J.-P.: A stochastic model of coherent structures for particle deposition in turbulent flows. Phys. Fluids 20, 053303 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Cristian Marchioli
    • 1
  • Maria Vittoria Salvetti
    • 2
  • Alfredo Soldati
    • 1
    • 3
    • 4
  1. 1.Centro Interdipartimentale di Fluidodinamica e Idraulica and Dipartimento di Energetica e MacchineUniversità degli Studi di UdineUdineItaly
  2. 2.Dipartimento di Ingegneria AerospazialeUniversità degli Studi di PisaPisaItaly
  3. 3.Department of Fluid MechanicsCISMUdineItaly
  4. 4.EPFLLausanneSwitzerland

Personalised recommendations