Acta Mechanica

, Volume 201, Issue 1–4, pp 211–229 | Cite as

Thirty years of numerical flow simulation in hydraulic turbomachines

  • Helmut KeckEmail author
  • Mirjam Sick


The application of computational fluid dynamics (CFD) in the design of water turbines and pumps started about 30 years ago. This paper reviews the main steps and breakthroughs in the methods that were made during this period, through the eyes of one particular water turbine company which spear-headed some of the first developments for practical applications. Practical examples are used to illustrate the developments of the tools from 1978 to 2008 and to give an overview of the complete revolution in hydraulic turbine design that has occurred over this time. Several periods with distinct levels of complexity, and hence accuracy of the physical models and of the simulation methods can be distinguished. The first steps coincided with the introduction of the Finite Element Method into CFD, and were characterized by simplified Quasi-3D Euler solutions and Fully 3D potential flow solutions. Over the years the complexity continuously increased in stages: via 3D Euler solutions, to steady RANS simulations of single blade passages using finite volume methods, extending to steady simulations of whole machines, until today unsteady RANS equations are solved with advanced turbulence models. The most active areas of research and development are now concerned with including the effects of 2-phase flows (free surface flow in Pelton turbines and cavitation) and fluid–structure interaction.


Computational Fluid Dynamic Computational Fluid Dynamic Simulation Guide Vane Draft Tube Hydraulic Turbine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersson, U., Dahlbäck, N.: Experimental evaluation of draft tube flow—a test case for CFD simulations. In: XIX IAHR Symposium on Hydraulic Machinery and Systems, Singapore (1998)Google Scholar
  2. 2.
    Andersson, U., Engström, F., Gustavsson, H., Karlsson, R.: The Turbine-99 workshops—lessons learned. The QNET-CFD Network Newsletter, vol. 2(3) (2003)Google Scholar
  3. 3.
    Avellan, F., Dupont, Ph., Kvicinsky, S.: Flow calculations in Pelton turbines—Part 2: free surface flows. In: XIXth IAHR Symposium on Hydraulic Machinery and Systems, Singapore (1998)Google Scholar
  4. 4.
    Avellan, F.: Flow investigation in a Francis draft tube: the flindt project. In: Proceedings of the Hydraulic Machinery and Systems 20th IAHR Symposium, Charlotte (2000)Google Scholar
  5. 5.
  6. 6.
    Casey, M.V., Keck, H.: Hydraulic turbines. Handbook of Fluid Dynamics and Fluid Machinery, Chap. 27.9, vol. 3. Wiley, London (1996)Google Scholar
  7. 7.
    Casey, M.V., Wintergerste, T.: Best practice guidelines for industrial CFD. Published by ERCOFTAC (2000)Google Scholar
  8. 8.
    Drtina, P., Goede, E., Schachenmann, A.: Three dimensional turbulent flow simulation for two different hydraulic turbine draft tubes. In: Proceedings of the First European Computational Fluid Dynamics Conference. Brussels, Belgium, 7–11 Sep. 1992Google Scholar
  9. 9.
    Dubas, M.: Über die Erregung infolge der Periodizität von Turbomaschinen. Ingenieur Archiv. Springer, Verlag (1984)Google Scholar
  10. 10.
    Eisele, K., Muggli, F., Zhang, Z., Casey, M., Sallaberger, M., Sebestyen, A.: Experimental and numerical studies of flow instabilities in pump-turbine stages. In: XIX IAHR Symposium, Singapore (1998)Google Scholar
  11. 11.
    Gehrer, A., Egger, A., Riener, J.: Numerical and experimental investigation of the daft tube flow downstream of a bulb turbine. In: Proceedings of the XXI IAHR Symposium on Hydraulic Machinery and Systems, Lausanne (2002)Google Scholar
  12. 12.
    Göde, E., Ryhming, I.L.: 3D-Computation of the flow in a Francis runner. Sulzer Technical Review No. 4 (1987)Google Scholar
  13. 13.
    Göde, E., Cuénod, R., Pestalozzi, J.: Visualization of flow phenomena in a hydraulic turbine based on 3D flow computations. Waterpower (1989)Google Scholar
  14. 14.
    Göde E., Cuénod R., Bachmann P.: Theoretical and experimental investigation of the flow field around a Francis runner. IAHR Symposium, Trondheim (1988)Google Scholar
  15. 15.
    Göde E.: A Stacking technique for multistage 3D flow computation in hydraulic turbomachinery. GAMM workshop, Lausanne (1989)Google Scholar
  16. 16.
    Höller, H.K., Keck, H.: The complete finite element flow computation in a bulb turbine from inlet trash rack to runner outlet. IAHR Symposium Tokyo (1980)Google Scholar
  17. 17.
    Jermann P., Keck H., Pestalozzi J.: FEM—flow analysis in hydraulic turbomachinery runners. Water Power Conference, Las Vegas (1985)Google Scholar
  18. 18.
    Keck, H.: Die Anwendung der Finite-Elemente-Methode auf die Berechnung von 3D-Potentialströmungen. Internal Escher Wyss Report WT-78–566 (1978)Google Scholar
  19. 19.
    Keck, H., Haas, W.: Vorticity and blade circulation modeling in the calculation of quasi-three-dimensional cascade flows with finite elements. 3. In: Int. Conf. on Finite Elements in Flow Problems, Banff/Canada (1980)Google Scholar
  20. 20.
    Keck, H.: Finite Element Analysis of Flows in Hydraulic Turbomachines. Escher Wyss News, vol. 53 (1980)Google Scholar
  21. 21.
    Keck, H., Haas, W.: Finite Element Analysis of quasi-3D flow in turbomachines. Finite Elements in Fluids, Chap. 24, vol. 4. Wiley, London (1982)Google Scholar
  22. 22.
    Keck H., Göde E., Pestalozzi J.: Experience with 3D Euler flow analysis as a practical design tool. IAHR Symposium, Belgrade (1992)Google Scholar
  23. 23.
    Keck H., Göde E., Grunder R., Pestalozzi J.: Upgrading by new runners based on 3D-flow simulation and model testing. IAHR Symposium, Sao Paulo (1992)Google Scholar
  24. 24.
    Keck, H., Drtina, P., Sick, M.: Numerical hill chart prediction by means of CFD stage simulation for a complete francis turbine. In: Proceedings of the XVIII IAHR Symposium, Valencia (1996)Google Scholar
  25. 25.
    Keller, M.: CFD of Unsteady Phenomena in water turbines. In: 24th CADFEM User’s Meeting (2006)Google Scholar
  26. 26.
    Keller, M., Sallaberger, M.: (2) Modern hydraulic design of pump turbines. In: Proceedings of the 14th International Seminar on Hydropower Plants, Vienna (2006)Google Scholar
  27. 27.
    Kvicinski, S., Kueny, J.L., Avellan, F., Parkinson, E.: Experimental and numerical analysis of free suface flows in a rotating bucket. In: XXI IAHR Symposium, Lausanne, Switzerland (2002)Google Scholar
  28. 28.
    Launder B.E., Spalding D.B.: Mathematical Models of Turbulence. Academic Press, London/New York (1972)zbMATHGoogle Scholar
  29. 29.
    Lockey, K., Keller, M., Sick, M., Gehrer, A.: Flow induced vibrations at stay vanes: Experience at site and CFD simulation of von Kármán vortex shedding. Hydro2006, Porto Carras, Greece (2006)Google Scholar
  30. 30.
    Muggli F.A., Eisele K., Casey M.V. et al.: Flow analysis in a pump diffuser—Part 2: Validation and limitations of CFD for diffuser flows. ASME J. Fluids Eng. 119, 978–984 (1997)CrossRefGoogle Scholar
  31. 31.
    Muggli, F., Zhang, Z. Schärer, C., Geppert, L.: Numerical and experimental analysis of Pelton turbine flow, Part 2: the free surface jet flow. XX IAHR Symposium, Charlotte (2000)Google Scholar
  32. 32.
    Parkinson, E., Lestriez, R., Chapuis, L.: Flow calculations in Pelton turbines. Part 1: Repartitor and injector numerical analysis. In: Proceedings of the XIX IAHR Symposium, Singapore (1998)Google Scholar
  33. 33.
    Parkinson, E., Garcin, H., Vullioud, G., Muggli, F., Zhang, Z., Casartelli, E.: (1) Experimental and numerical investigations of the free jet flow at a model nozzle of a Pelton turbine. In: Proceedings of the XXI IAHR Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland (2002)Google Scholar
  34. 34.
    Parkinson, E., Vullioud, G., Geppert, L., Keck, H.: (2) Analysis of Pelton turbine flow patterns for improved runner component interaction. Hydropower Dams (5) (2002)Google Scholar
  35. 35.
    Parkinson, E., Neury, C., Garcin, H., Vullioud, G., Weiss, Th.: Unsteady analysis of a Pelton runner with flow and mechanical simulatons. Hydro (2005)Google Scholar
  36. 36.
    Parkinson, E., Angehrn, R., Weiss, Th.: Modern design engineering applied to Pelton runners. Hydropower Dams (4) (2007)Google Scholar
  37. 37.
    Roache, P.J.: Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, New Mexico (1972)Google Scholar
  38. 38.
    Sallaberger, M., Staehle, M., Thoma, W., Kiedrowski, T., Krasicki, R., Lewandowski, S.: (2) Major progress in upgrading of reversible pump turbines. In: Proceedings of Hydro, Bern, Switzerland (2000)Google Scholar
  39. 39.
    Schachenmann, A., Muggli, F., Gühlich, J.: Comparison of three Navier–Stokes codes with lda measurements on an industrial radial pump impeller. In: ASME Fluids Engineering Conference, Washington DC (1993)Google Scholar
  40. 40.
    Schlichting, H.: Grenzschicht Theorie. Braun Verlag, Karlsruhe, 8. Auflage, Kapitel II, p. 32 (1984)Google Scholar
  41. 41.
    Schmidl, R.: Contribution to the cavitational optimization of Kaplan blades by numerical flow simulation and evolutionary strategies. Doctoral Thesis, Faculty of Mechanical Engineering, Graz University of Technology, Graz, Austria (2007)Google Scholar
  42. 42.
    Sebestyen, A., Jaquet, M., Keck, H.: CFD-Design procedure for runner replacement of reversible pump-turbines. In: Proceedings of the XIX IAHR Symposium, Singapore (1998)Google Scholar
  43. 43.
    Sick, M., Casey, M., Galpin, P.: Validation of a stage calculation in a Francis turbine. In: Proceedings of the XVIII IAHR Symposium, Valencia, Spain (1996)Google Scholar
  44. 44.
    Sick M., Drtina P., Casey M.V.: The use of stage capability in CFD for turbomachinery, with application in a Francis turbine. Int. J. Comput. Appl. 11(3/4/5), 219–220 (1998)Google Scholar
  45. 45.
    Sick, M., Schindler, M., Drtina, P., Schärer, C., Keck, H.: (1) Numerical and experimental analysis of Pelton turbine flow. Part 1: Distributor and Injector. XX IAHR Symposium, Charlotte (2000)Google Scholar
  46. 46.
    Sick, M., Keck, H., Parkinson, E., Vullioud, G.: (2) New challenges in Pelton research. In: Proceedings of Hydro, Bern, Switzerland (2000)Google Scholar
  47. 47.
    Sick, M., Dörfler, P., Lohmberg, A., Casey, M.: Numerical Simulations of Vortical Flows in Draft Tubes. WCCMV, Vienna, Austria (2002)Google Scholar
  48. 48.
    Sick, M.: State of the art of CFD based feasibility studies for water turbines. Technology Review for HPLIG (CEATI), CEATI Report No. T042700-0324, Montreal (2004)Google Scholar
  49. 49.
    Sick, M., Stein, P., Dörfler, P., Sallaberger, M.: Part-load instabilities in francis turbines and pump turbines. Int. J. Hydropower Dams (2005)Google Scholar
  50. 50.
    Sick, M., Lais, S., Weiss, Th.: Numerical prediction of flow induced dynamic load in water turbines: recent developments and results. In: Proceedings of Hydro2007, Granada, Spain (2007)Google Scholar
  51. 51.
    Stein, P., Sick, M., Doerfler, P., White, P., Braune, A.: Numerical simulation of the cavitating draft tube vortex in a Francis turbine. In: Proceedings of the XXIII IAHR Symposium, Yokohama (2006)Google Scholar
  52. 52.
    Stein, P.: Numerical simulation and investigation of draft tube vortex flow. Ph.D. Thesis, Coventry University, Coventry (2007)Google Scholar
  53. 53.
    Vu, T.C., Nennemann, B., Ausoni, Ph., Farhat, M., Avellan, F.: Unsteady CFD prediction of von Kármán vortex shedding in hydraulic turbine stay vanes. In: Proceedings of Hydro2007, Granada (2007)Google Scholar
  54. 54.
    Zhang, Zh., Casey, M. V.: Experimental studies of the jet of a Pelton turbine, vol. 221. In: Proc ImechE. Part A J. Power Energy, pp. 1181–1192 (2007)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Andritz VA TECH HYDRO LtdZurichSwitzerland

Personalised recommendations