Acta Mechanica

, Volume 197, Issue 1–2, pp 63–96 | Cite as

The Composite Eshelby Tensors and their applications to homogenization

Article

Summary

In recent studies, the exact solutions of the Eshelby tensors for a spherical inclusion in a finite, spherical domain have been obtained for both the Dirichlet- and Neumann boundary value problems, and they have been further applied to the homogenization of composite materials [15], [16]. The present work is an extension to a more general boundary condition, which allows for the continuity of both the displacement and traction field across the interface between RVE (representative volume element) and surrounding composite. A new class of Eshelby tensors is obtained, which depend explicitly on the material properties of the composite, and are therefore termed “the Composite Eshelby Tensors”. These include the Dirichlet- and the Neumann-Eshelby tensors as special cases. We apply the new Eshelby tensors to the homogenization of composite materials, and it is shown that several classical homogenization methods can be unified under a novel method termed the “Dual Eigenstrain Method”. We further propose a modified Hashin-Shtrikman variational principle, and show that the corresponding modified Hashin-Shtrikman bounds, like the Composite Eshelby Tensors, depend explicitly on the composite properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chiu Y. P. (1977). On the stress field due to initial strains in cuboid surrounded by an infinite elastic space. J. Appl. Mech. 44: 587–590 MATHGoogle Scholar
  2. Christensen R. M. and Lo K. H. (1979). Solutions for the effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27: 315–330 MATHCrossRefGoogle Scholar
  3. Eshelby J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. A 241: 376–396 MATHCrossRefMathSciNetGoogle Scholar
  4. Eshelby J. D. (1959). The elastic field outside an ellipsoidal inclusion. Proc. Roy. Soc. A 252: 561–569 MATHCrossRefMathSciNetGoogle Scholar
  5. Eshelby, J. D.: Elastic inclusions and inhomogeneities. In: Progress in solid mechanics, Vol. 2. pp. 89–104 (Snedden, N. I., Hill, R., eds.). North-Holland 1961Google Scholar
  6. Hashin Z. and Shtrikman S. (1962a). On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10: 335–342 CrossRefMathSciNetGoogle Scholar
  7. Hashin Z. and Shtrikman S. (1962b). A variational approach to the theory of the elastic behavior of polycrystals. J. Mech. Phys. Solids 10: 343–352 CrossRefMathSciNetGoogle Scholar
  8. Hashin Z. (1991). The spherical inclusion with imperfect interface. J. Appl. Mech. 58: 444–449 CrossRefGoogle Scholar
  9. Hashin Z. (2002). The interphase/imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids 50: 2509–2537 MATHCrossRefMathSciNetGoogle Scholar
  10. Hill, R.: New derivations of some elastic extremum principles. In: Progress in applied mechanics – The Prager anniversary volume, pp. 99–106. New York: Macmillan 1963Google Scholar
  11. Hill R. (1965a). Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13: 89–101 MATHCrossRefGoogle Scholar
  12. Hill R. (1965b). Theory of mechanical properties of fibre-strengthened materials III. Self-consistent model. J. Mech. Phys. Solids 13: 189–198 CrossRefGoogle Scholar
  13. Jiang B. and Weng G. J. (2004). A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. J. Mech. Phys. Solids 52: 1125–1149 MATHCrossRefGoogle Scholar
  14. Li S., Sauer R. and Wang G. (2005). A circular inclusion in a finite domain. I. The Dirichlet-Eshelby problem. Acta Mech. 179: 67–90 MATHCrossRefGoogle Scholar
  15. Li S., Sauer R. A. and Wang G. (2007a). The Eshelby tensors in a finite spherical domain: I. Theoretical formulations. J. Appl. Mech. 74: 770–783 CrossRefMathSciNetGoogle Scholar
  16. Li S., Wang G. and Sauer R. A. (2007b). The Eshelby tensors in a finite spherical domain: II. Applications in homogenization. J. Appl. Mech. 74: 784–797 CrossRefMathSciNetGoogle Scholar
  17. Löhnert, S.: Computational homogenization of microheterogeneous materials at finite strains including damage. Dissertation, Universität Hannover 2004Google Scholar
  18. Luo H. A. and Weng G. J. (1987). On Eshelby’s inclusion problem in a three-phase spherically concentric solid and a modification of Mori-Tanaka’s method. Mech. Mater. 6: 347–361 CrossRefGoogle Scholar
  19. Luo H. A. and Weng G. J. (1989). On Eshelby’s S-tensor in a three-phase cylindrical concentric solid and the elastic moduli of fibre-reinforced composites. Mech. Mater. 8: 77–88 CrossRefGoogle Scholar
  20. Marur P. R. (2005). Effective elastic moduli of syntactic foams. Mater. Lett. 59: 1954–1957 CrossRefGoogle Scholar
  21. Mura T. and Kinoshita N. (1978). The polynomial eigenstrain problem or an anisotropic ellipsoidal inclusion. Phys. Status Solidi A 48: 447–450 CrossRefGoogle Scholar
  22. Mura T. (1987). Micromechanics of defects in solids, 2nd ed. Martinus Nijhoff, Boston Google Scholar
  23. Nemat-Nasser S. and Hori M. (1999). Micromechanics: overall properties of heterogeneous materials, 2nd ed. Elsevier, Amsterdam Google Scholar
  24. Qiu Y. P. and Weng G. J. (1991). Elastic moduli of thickly coated particle and fiber-reinforced composites. J. Appl. Mech. 58: 388–398 MATHCrossRefGoogle Scholar
  25. Rodin G. J. (1996). Eshelby's inclusion problem for polygons and polyhedra. J. Mech. Phys. Solids 44: 1977–1995 CrossRefGoogle Scholar
  26. Saidi F., Bernabé Y. and Reuschlé T. (2005). Uniaxial compression of synthetic, poorly consolidated granular rock with a bimodal grain-size distribution. Rock Mech. Rock Engng. 38: 129–144 CrossRefGoogle Scholar
  27. Sharma P. and Ganti S. (2004). Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71: 663–671 MATHCrossRefGoogle Scholar
  28. Somigliana, C.: Sopra l’equilibrio di un corpo elastico isotropo, pp. 17–19. Il Nuovo Ciemento 1886Google Scholar
  29. Wang G., Li S. and Sauer R. (2005). A circular inclusion in a finite domain. II. The Neumann–Eshelby problem. Acta Mech. 179: 91–110 CrossRefGoogle Scholar
  30. Willis, J. R.: Variational and related methods for the overall properties of composites. In: Advances in applied mechanics (Yih, C.-S., ed.), Vol. 21, pp. 1–78. New York: Academic Press 1981Google Scholar

Copyright information

© Springer-Verlag Wien 2007

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations