Acta Mechanica

, Volume 188, Issue 3–4, pp 167–208 | Cite as

Generalization of the multiparticle effective field method to random structure matrix composites

Article

Summary

In this paper linearly thermoelastic composite media are treated, which consist of a homogeneous matrix containing a statistically homogeneous random set of ellipsoidal uncoated or coated inclusions. Effective properties (such as compliance, thermal expansion, stored energy) as well as the first statistical moments of stresses in the phases are estimated for the general case of nonhomogeneity of the thermoelastic inclusion properties. The micromechanical approach is based on the generalization of the ``multiparticle effective field'' method (MEFM, see [7] for references), previously proposed for the estimation of stress field averages in the phases. The refined version of the MEFM takes into account both the variation of the effective fields acting on each pair of fibers and inhomogeneity of statistical average of stresses inside the inclusions. One considers in detail the connection of the method proposed with numerous related methods. The explicit representations of the effective thermoelastic properties and stress concentration factor are expressed through some building blocks described by numerical solutions for both the one and two inclusions inside the infinite medium subjected to the homogeneous loading at infinity. Just with some additional assumptions (such as an effective field hypothesis) the involved tensors can be expressed through the Green's function, Eshelby tensor and external Eshelby tensor. The dependence of effective properties and stress concentrator factors on the radial distribution function of the inclusion locations is analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Willis, J. R. 1981Variational and related methods for the overall properties of compositesAdv. Appl. Mech.21178MathSciNetCrossRefMATHGoogle Scholar
  2. Willis, J. R. 1982

    Elasticity theory of composites

    Hopkins, H. G.Sewell, M. J. eds. Mechanics of solids. The Rodney Hill 60th Anniversary VolumePergamon PressOxford653686
    Google Scholar
  3. Willis, J. R. 1983The overall elastic response of composite materialsASME J. Appl. Mech.5012021209MATHCrossRefGoogle Scholar
  4. Mura, T. 1987Micromechanics of defects in solidsMartinus NijhoffDordrechtGoogle Scholar
  5. Nemat-Nasser, S., Hori, M. 1993Micromechanics: overall properties of heterogeneous materialsNorth-HollandElsevierMATHGoogle Scholar
  6. Torquato, S.: Random heterogeneous materials: microstructure and macroscopic properties. Springer 2002.Google Scholar
  7. Buryachenko, V. A. 2001Multiparticle effective field and related methods in micromechanics of composite materialsAppl. Mech. Rev.54147CrossRefGoogle Scholar
  8. Milton, G. W. 2002The theory of composites. Appl. Comput. Math., Vol. 6Cambridge University PressCambridgeGoogle Scholar
  9. Kröner, E. 1958Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanstanten des EinkristallsZ. Physik151504518CrossRefGoogle Scholar
  10. Hill, R. 1965A self-consistent mechanics of composite materialsJ. Mech. Phys. Solids13212222Google Scholar
  11. Mori, T., Tanaka, K. 1973Average stress in matrix and average elastic energy of materials with misfitting inclusionsActa Metall.21571574CrossRefGoogle Scholar
  12. Benveniste, Y. 1987A new approach to application of Mori-Tanaka's theory in composite materialsMech. Mater.6147157CrossRefGoogle Scholar
  13. Buryachenko, V. A. 2001Multiparticle effective field and related methods in micromechanics of random structure compositesMath. Mech. Solids6577612MATHGoogle Scholar
  14. Lekhnitskii, A. G. 1963Theory of elasticity of an anisotropic elastic bodyHolden DaySan FranciscoMATHGoogle Scholar
  15. Buryachenko, V. A., Rammerstorfer, F. G. 1998Thermoelastic stress fluctuations in random structure composites with coated inclusionsEur. J. Mech. A/Solids17763788CrossRefMathSciNetMATHGoogle Scholar
  16. Christensen, R. M. 1979Mechanics of composite materialsWiley InterscienceNew YorkGoogle Scholar
  17. Kreher, W., Pompe, W. 1989Internal stresses in heterogeneous solidsAkademie-VerlagBerlinMATHGoogle Scholar
  18. Delves, L. M., Mohamed, J. L. 1985Computational methods for integral equationsCambridge University PressCambridgeMATHGoogle Scholar
  19. Buryachenko, V. A., Tandon, G. P. 2004Estimation of effective elastic properties of random structure composites for arbitrary inclusion shape and anisotropy of components using finite element analysisInt. J. Multiscale Comput. Engng.22945CrossRefGoogle Scholar
  20. Varga, R. S. 2000Matrix iterative analysisSpringerBerlinMATHGoogle Scholar
  21. Eshelby, J. D. 1957The determination of the elastic field of an ellipsoidal inclusion, and related problemsProc. R. Soc. Lond.A241376396MathSciNetGoogle Scholar
  22. Dvorak, G. J., Benveniste, Y. 1992On transformation strains and uniform fields in multiphase elastic mediaProc. Roy. Soc. Lond.A437291310MathSciNetGoogle Scholar
  23. Buryachenko, V. A., Pagano, N. J. 2005Multiscale analysis of multiple interacting inclusions problem: Finite number of interacting inclusionsMath. Mech. Solids102562MathSciNetMATHGoogle Scholar
  24. Buryachenko, V. A., Pagano, N. J. 2003Nonlocal models of stress concentrations and effective thermoelastic properties of random structure compositesMath. Mech. Solids8403433CrossRefMathSciNetMATHGoogle Scholar
  25. Chen, H. S., Acrivos, A. 1978The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrationsInt. J. Solids Struct.14349364CrossRefMATHGoogle Scholar
  26. Lax, M. 1952Multiple scattering of waves II. The effective fields dense systemsPhys. Rev.85621629CrossRefMATHGoogle Scholar
  27. Pyrz, R. 1994Quantitative description of the microstructure of composites. Part I: Morphology of unidirectional composite systemsComposites Sci. Tech.50197208CrossRefGoogle Scholar
  28. He, D., Ekere, N. N., Cai, L. 1999Computer simulation of random packing of unequal particlesPhys. Rev.E607098Google Scholar
  29. Buryachenko, V. A., Pagano, N. J., Kim, R. Y., Spowart, J. E. 2003Quantitative description of random microstructures of composites and their effective elastic moduliInt. J. Solids Struct.404772CrossRefMATHGoogle Scholar
  30. Bildstein, B., Kahl, G. 1994Triplet correlation functions for hard-spheres: computer simulation resultsJ. Chem. Phys.10058825893CrossRefGoogle Scholar
  31. Kirkwood, J. G. 1935Statistical mechanics of fluid mixturesJ. Chem. Phys.3300313CrossRefGoogle Scholar
  32. Buryachenko, V. A. 2005Effective elastic moduli and stress concentrator factors in random structure aligned fiber compositesZAMP5611071115CrossRefMathSciNetMATHGoogle Scholar
  33. Buryachenko, V. A., Rammerstorfer, F. G. 2000On the thermostatics of composites with coated random distributed inclusionsInt. J. Solids Struct.3731773200CrossRefMATHGoogle Scholar
  34. Buryachenko, V. A. 2000A simple method of analysis of multiple inclusion interaction problemInt. J. Comput. Civil Struct. Engng.1725Google Scholar
  35. Buryachenko, V. A., Roy, A. 2005Effective thermoelastic moduli and stress concentrator factors of nanocompositesActa Mech.177149169CrossRefMATHGoogle Scholar
  36. Buryachenko, V. A., Schoeppner, G. 2004Effective elastic and failure properties of fiber aligned compositesInt. J. Solids Struct.4148274844CrossRefMATHGoogle Scholar
  37. Buryachenko, V. A., Kushch, V. I. 2006Effective transverse elastic moduli of composites at non-dilute concentration of a random field of aligned fibersZAMP57491505CrossRefMathSciNetMATHGoogle Scholar
  38. Willis, J. R., Acton, J. R. 1976The overall elastic moduli of a dilute suspension of spheresQu. J. Mech. Appl. Math.29163177CrossRefMATHGoogle Scholar
  39. Buryachenko, V. A. 2004Foreword to special issue on recent advances in micromechanics of composite materialsInt. J. Multiscale Comput. Engng.2viiviiiGoogle Scholar

Copyright information

© Springer-Verlag Wien 2006

Authors and Affiliations

  1. 1.University of Dayton Research InstituteDaytonU.S.A

Personalised recommendations