Acta Mechanica

, Volume 187, Issue 1–4, pp 29–35

The flow of an elastico-viscous fluid past a stretching sheet with partial slip



An analysis is carried out to study the flow characteristics in an elastico-viscous fluid (Walters' liquid-B model) over a stretching sheet with partial slip. The flow is generated due to linear stretching of the sheet. Using suitable similarity transformations on the highly non-linear partial differential equations we derive exact analytical solution with appropriate boundary conditions. The important finding in this communication is the effect of partial slip on the velocity and skin friction coefficient.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Rajagopal, K. R., Na, T. Y., Gupta, A. S. 1984Flow of a viscoelastic fluid over a stretching sheetRheol. Acta23213215CrossRefGoogle Scholar
  2. Pontrelli, G. 1995Flow of a fluid of second grade over a stretching sheetInt. J. Non-Linear Mech.30287293MATHMathSciNetCrossRefGoogle Scholar
  3. Troy, W. C., Overman, E. A., Ermentrout, G. B., Keener, J. P. 1987Uniqueness of flow of a second order fluid past a stretching sheetQuart. Appl. Math.44753755MATHMathSciNetGoogle Scholar
  4. Andersson, H. I. 1992MHD flow of a viscoelastic fluid past a stretching surfaceActa Mech.95227230MATHMathSciNetCrossRefGoogle Scholar
  5. Ariel, P. D. 1992A hybrid method for computing the flow of viscoelastic fluidsInt. J. Num. Meth. Fluids14757774MATHCrossRefGoogle Scholar
  6. Ariel, P. D. 1994MHD flow of a viscoelastic fluid past a stretching sheet with suctionActa Mech.1054956MATHMathSciNetCrossRefGoogle Scholar
  7. Ariel, P. D. 1992Computation of flow of viscoelastic fluids by parameter differentiationInt. J. Num. Meth. Fluids1512951312MATHCrossRefGoogle Scholar
  8. Ariel, P. D. 1993Flow of a viscoelastic fluid through a porous channel – IInt. J. Num. Meth. Fluids.17605633MATHCrossRefGoogle Scholar
  9. Ariel, P. D. 1994The flow of a viscoelastic fluid past a porous plateActa Mech.107199204MATHMathSciNetCrossRefGoogle Scholar
  10. Navier, C. L. M. H. 1827Sur les lois du mouvement des fluidesMem. Acad. R. Sci. Inst. Fr.6389440Google Scholar
  11. Wang, C. Y. 2002Flow due to a stretching boundary with partial slip-an exact solution of the Navier-Stokes equationsChem. Eng. Sci.5737453747CrossRefGoogle Scholar
  12. Andersson, H. I. 2002Slip flow past a stretching surfaceActa Mech.158121125MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2006

Authors and Affiliations

  1. 1.Department of Mathematical SciencesTrinity Western UniversityLangleyCanada
  2. 2.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan
  3. 3.Department of Mathmatical SciencesCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations