Acta Mechanica

, 186:99 | Cite as

Mixed convection near a non-orthogonal stagnation point flow on a vertical plate with uniform surface heat flux

  • Y. Y. Lok
  • N. Amin
  • I. Pop


The interaction of a buoyancy induced mixed convection flow and a free stream impinging at some angle of incidence on a vertical flat plate with a prescribed surface heat flux is studied in this paper. The similarity equations are numerically solved for some values of the governing parameters. It is found that the buoyancy force and non-orthogonal mechanisms act to either reinforce or oppose one another. The stagnation point (separation point) is shifted at the left or at the right of the origin and it depends upon the balance between obliqueness and thermal effects.


Nusselt Number Stagnation Point Free Stream Mixed Convection Vertical Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ramachandran, R., Chen, T. S., Armaly, B. F. 1988Mixed convection in stagnation flows adjacent to vertical surfacesASME J. Heat Transf.110373377CrossRefGoogle Scholar
  2. Gebhart, B., Jaluria, Y., Mahajan, R., Sammakia, B. 1988Buoyancy-induced flows transportHemisphereNew YorkzbMATHGoogle Scholar
  3. Pop, I., Ingham, D. B. 2001Convective heat transfer: mathematical and computational modelling of viscous fluids and porous mediaPergamonOxfordGoogle Scholar
  4. Hiemenz, K. 1911Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden KreiszylinderDingl. Polytech. J.32321410Google Scholar
  5. Eckert, E. R. G.: Die Berechnung des Wärmeüberganges in der laminaren Grenzschicht umströmter Körper. VDI Forschungsheft, p. 416 (1942).Google Scholar
  6. Lok, Y. Y., Amin, N., Campean, D., Pop, I. 2005Steady mixed convection flow of a micropolar fluid near the stagnation point of a vertical surfaceInt. J. Numer. Meth. Heat Fluid Flow15654670Google Scholar
  7. Stuart, J. T. 1959The viscous flow near a stagnation point when the external flow has uniform vorticityJ. Aerospace Sci.26124125Google Scholar
  8. Tamada, K. J. 1979Two-dimensional stagnation point flow impinging obliquely on a plane wallJ. Phys. Soc. Japan46310311CrossRefGoogle Scholar
  9. Dorrepaal, J. M. 1986An exact solution of the Navier–Stokes equation which describes non-orthogonal stagnation-point flow in two dimensionsJ. Fluid Mech.163141147zbMATHMathSciNetCrossRefGoogle Scholar
  10. Labropulu, F., Dorrepaal, J. M., Chandna, O. P. 1996Oblique flow impinging on a wall with suction or blowingActa Mech.1151525zbMATHCrossRefGoogle Scholar
  11. Amaouche, M., Boukari, D. 2003Influence of thermal convection on non-orthogonal stagnation point flowInt. J. Thermal Sci.42303310CrossRefGoogle Scholar
  12. Amaouche, M., Bouda, F. N., Sadat, H. 2005The onset of thermal instability of a two-dimensional hydromagnetic stagnation point flowInt. J. Heat Mass Transf.4844354445CrossRefGoogle Scholar
  13. Sparrow, E. M., Gregg, J. L. 1956Laminar free convection from a vertical plate with uniform surface heat fluxTrans. ASME, J. Heat Transf.78435440Google Scholar
  14. Wilks, G. 1974The flow of a uniform stream over a semi-infinite vertical flat plate with uniform surface heat fluxInt. J. Heat Mass Transf.17743753zbMATHCrossRefGoogle Scholar
  15. Afzal, N. 1985Higher-order effects in natural convection flow over a uniform flux horizontal surfaceWärme- und Stoffübertr.19177180CrossRefGoogle Scholar
  16. Chen, T. S., Tien, H. C., Armaly, B. F. 1986Natural convection on horizontal, inclined, and vertical plates with variable surface temperature or heat fluxInt. J. Heat Mass Transf.2914651478zbMATHCrossRefGoogle Scholar
  17. Merkin, J. H., Mahmood, T. 1990On the free convection boundary layer on a vertical plate with prescribed surface heat fluxJ. Engng. Math.2495107zbMATHMathSciNetCrossRefGoogle Scholar
  18. Merkin, J. H., Mahmood, T. 1989Mixed convection boundary layer similarity solutions: prescribed wall heat fluxJ. Appl. Math. Phys.405168(ZAMP)zbMATHMathSciNetCrossRefGoogle Scholar
  19. Lin, H.-T., Yu, W.-S., Yang, S.-L. 1989Free convection on an arbitrarily inclined plate with uniform surface heat fluxWärme- und Stoffübertr.24183190CrossRefGoogle Scholar
  20. Merkin, J. H., Pop, I., Mahmood, T. 1991Mixed convection on a vertical surface with a prescribed heat flux: the solution for small and large Prandtl numbersJ. Engng. Math.25165190zbMATHMathSciNetCrossRefGoogle Scholar
  21. Chaudhary, M. A., Merkin, J. H. 1993The effects of blowing and suction on free convection boundary layers on vertical surfaces with prescribed heat fluxJ. Engng. Math.27265292zbMATHMathSciNetCrossRefGoogle Scholar
  22. Merkin, J. H. 1994Natural-convection boundary-layer flow on a vertical surface with Newtonian heatingInt. J. Heat Fluid Flow15392398CrossRefGoogle Scholar
  23. Cebeci, T., Bradshaw, P. 1984Physical and computational aspects of convective heat transfSpringerNew YorkGoogle Scholar
  24. Nazar, R., Ahmad, S., Pop, I.: Forced convection boundary layers at a forward stagnation point under mixed thermal boundary conditions (private communication).Google Scholar

Copyright information

© Springer-Verlag Wien 2006

Authors and Affiliations

  1. 1.Centre for Academic ServicesKolej Universiti Teknikal Kebangsaan MalaysiaMelakaMalaysia
  2. 2.Department of Mathematics, Faculty of ScienceUniversity Teknologi MalaysiaJohorMalaysia
  3. 3.Faculty of MathematicsUniversity of Cluj ClujRomania

Personalised recommendations