Skip to main content
Log in

Determination of 9-fluorenylmethoxycarbonyl (Fmoc) resin loading in solid‐phase synthesis by RP-HPLC internal standard method

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A simple RP-HPLC method based on an internal standard is proposed to determine the resin loading in solid-phase peptide synthesis. The method is applicable for the most common type of synthesis, where 9-fluorenylmethoxycarbonyl (Fmoc) is used as the protective group and piperidine as the deprotecting agent. Both products of the deprotection reaction (dibenzofulvene and dibenzofulvene-piperidine adduct) are separated by RP-HPLC and quantified by a UV detector. Biphenyl serves as the internal standard for both analytes. The resin loading is calculated using the equation resulting from the combination of internal standard method equations for each of the two analytes. The method provides true results, as evidenced by their comparison with the independent method. The relative standard deviation of the method is 1.52%. A further advantage of the method is that it allows determination from the waste solution of the synthesis, and, therefore, can also be used for monitoring during multi-step synthesis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chan WC, White PD (2000) Fmoc solid phase peptide synthesis: A practical approach. Oxford University Press, Oxford

    Google Scholar 

  2. Merrifield RB (1963) J Am Chem Soc 85:2149

    Article  CAS  Google Scholar 

  3. Carpino LA (1987) Acc Chem Res 20:401

    Article  CAS  Google Scholar 

  4. Behrendt R, White P, Offer J (2016) J Pept Sci 22:4

    Article  CAS  Google Scholar 

  5. Fields GB, Noble RL (1990) Int J Pept Protein Res 35:161

    Article  CAS  Google Scholar 

  6. Krumdieck CL, Baugh CM (1969) Biochemistry 8:1568

    Article  CAS  Google Scholar 

  7. Dorman LC (1969) Tetrahedron Lett 10:2319

    Article  Google Scholar 

  8. Hany R, Rentsch D, Dhanapal B, Obrecht D (2001) J Comb Chem 3:85

    Article  CAS  Google Scholar 

  9. Yan B, Gremlich HU, Moss S, Coppola GM, Sun Q, Liu L (1999) J Comb Chem 1:46

    Article  CAS  Google Scholar 

  10. Newcomb WS, Deegan TL, Miller W, Porco JA (1998) Biotechnol Bioeng 61:55

    Article  CAS  Google Scholar 

  11. Carpino LA, Mansour EME, Knapczyk J (1983) J Org Chem 48:666

    Article  CAS  Google Scholar 

  12. Meienhofer J, Waki M, Heimer EP, Lambros TJ, Makofske RC, Chang CD (1979) Int J Pept Protein Res 13:35

    Article  CAS  Google Scholar 

  13. Eissler S, Kley M, Bächle D, Loidl G, Meier T, Samson D (2017) J Pept Sci 23:757

    Article  CAS  Google Scholar 

  14. Al Musaimi O, Basso A, de la Torre BG, Albericio F (2019) ACS Comb Sci 21:717

    Article  CAS  Google Scholar 

  15. Gude M, Ryf J, White PD (2002) Lett Pept Sci 9:203

    CAS  Google Scholar 

  16. Várady L, Rajur SB, Nicewonger RB, Guo MJ, Ditto L (2000) J Chromatogr A 869:171

    Article  Google Scholar 

  17. Freeman CE, Howard AG (2005) Talanta 65:574

    Article  CAS  Google Scholar 

  18. Rahali H, Ghanem N, Griffe L, Rahali R, Stien D (2004) New J Chem 28:1344

    Article  CAS  Google Scholar 

  19. Nakano T, Nakagawa O, Yade T, Okamoto Y (2003) Macromolecules 36:1433

    Article  CAS  Google Scholar 

  20. Cuadros-Rodrı́guez L, Gámiz-Gracia L, Almansa-López EM, Bosque-Sendra JM (2001) Trends Anal Chem 20:620

    Article  Google Scholar 

  21. Comins DL, Joseph SP (2001) In: Charette AB (ed) e-Encyclopedia of reagents for organic synthesis. https://doi.org/10.1002/047084289X.rd335

  22. Nakano T, Takewaki K, Yade T, Okamoto Y (2001) J Am Chem Soc 123:9182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support by the project Progress Q46 of Charles University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Nesměrák.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mácha, H., Kořínek, M., Drož, L. et al. Determination of 9-fluorenylmethoxycarbonyl (Fmoc) resin loading in solid‐phase synthesis by RP-HPLC internal standard method. Monatsh Chem 152, 1075–1080 (2021). https://doi.org/10.1007/s00706-021-02789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02789-5

Keywords

Navigation