Advertisement

Detection and identification of engineered nanoparticles in exhaled breath condensate, blood serum, and urine of occupationally exposed subjects

  • Lucie LischkovaEmail author
  • Daniela Pelclova
  • Jiri Hlusicka
  • Tomas Navratil
  • Stepanka Vlckova
  • Zdenka Fenclova
  • Stepanka Dvorackova
  • Alexey Popov
  • Alena Michalcova
  • Ivo Marek
  • Pavel Mikuska
  • Vladimir Zdimal
  • Martin Kostejn
  • Jakub Ondracek
  • Jaroslav Schwarz
  • Sergey Zakharov
Original Paper
  • 11 Downloads

Abstract

The use of nanotechnology and the fields of application of nanomaterials are growing vastly, but the negative health effects on the exposed employees are not well studied. The standardized methods of monitoring of occupational exposure are still absent. The task of occupational physicians is to find the ways of evaluation of potential risks of exposure to engineered nanoparticles and to determine the biomarkers for early diagnostics and prevention of occupational diseases. The aim of our study was to detect and identify engineered nanoparticles in biological samples received from occupationally exposed subjects and to evaluate the association of findings with the results of external aerosol measurements on the workplace. The study cohort consisted of two groups of subjects. The first group was exposed to engineered nanoparticles containing mainly iron, manganese, and carbon compounds; the second group was exposed to the nanoparticles containing copper oxide. The post-shift biological samples (urine, blood serum, and exhaled breath condensate) were collected. The analysis was performed by transmission electron microscopy and energy-dispersive spectroscopy. The nanoparticles were detected in all the biological samples. The most common identified chemical elements were the biogenic ones (carbon, potassium, chlorine, oxygen), but the nanoparticles containing metals were identified in EBC, blood, and urine as well (gold, silver, copper, lanthanum, cerium, and tantalum). Our results demonstrate the possibility of detection of occupational exposure to the engineered nanoparticles in human biological fluids. Further studies are necessary to compare the pre-shift and post-shift burden of samples with engineered nanoparticles and to determine the magnitude of occupational exposure during the shift.

Graphical abstract

Keywords

Nanoparticles Occupationally exposed subjects Detection Transmission electron microscopy 

Notes

Acknowledgements

This study was supported by the Czech Science Foundation (GA ČR No. 18-02079S), Czech Science Foundation Grant no. P503/12/G147, the Projects PROGRES Q25, Q29 of Charles University in Prague and project GAUK of Charles University in Prague (No. 192718).

References

  1. 1.
    Loeffler J, Hedderich R, Koskinen J, Linder M, Lojkowski W, Moritz T, Zins M, Bernabeu E, Larena A (2015) Nanomaterial Roadmap. http://www.tut.ee/public/m/Mehaanikateaduskond/Instituudid/Materjalitehnika_instituut/MTX9100/Additional_reading/NanoMat2015.pdf. Downloaded 29 Dec 2018
  2. 2.
    Foltynowicz Z, Gwiazdowska D, Rodewald D, Nowaczyk A, Filipiak M (2013) Fibres 21:91Google Scholar
  3. 3.
    Elder A, Vidyasagar S, DeLouise L (2009) Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:434CrossRefGoogle Scholar
  4. 4.
    Theegarten D, Boukercha S, Philippou S, Anhenn O (2010) Diagn Pathol 5:77CrossRefGoogle Scholar
  5. 5.
    Singh N, Jenkins GJ, Asadi R, Doak SH (2010) Nano Rev 1:5358CrossRefGoogle Scholar
  6. 6.
    Singh N, Jenkins GJ, Nelson BC, Marquis BJ, Maffeis TG, Brown AP, Williams PM, Wright CJ, Doak SH (2012) Biomaterials 33:163CrossRefGoogle Scholar
  7. 7.
    Dumkova J, Vrlikova L, Vecera Z, Putnova B, Docekal B, Mikuska P, Fictum P, Hampl A, Buchtova M (2016) Int J Mol Sci 17:874CrossRefGoogle Scholar
  8. 8.
    Dumkova J, Smutna T, Vrlikova L, Le Coustumer P, Vecera Z, Docekal B, Mikuska P, Capka L, Fictum P, Hampl A, Buchtova M (2017) Part Fibre Toxicol 14:55CrossRefGoogle Scholar
  9. 9.
    Ursini CL, Cavallo D, Fresegna AM (2014) J Appl Toxicol 34:1209CrossRefGoogle Scholar
  10. 10.
    Hsieh SF, Bello D, Schmidt DF (2013) Small 9:1853CrossRefGoogle Scholar
  11. 11.
    Hurbankova M, Cerna S, Kovacikova Z (2013) Cent Eur J Public Health 21:165CrossRefGoogle Scholar
  12. 12.
    Pirela SV, Miousse IR, Lu X (2015) Environ Health Perspect 124:210CrossRefGoogle Scholar
  13. 13.
    Pelclova D, Zdimal V, Fenclova Z, Vlckova S, Turci F, Corazzari I, Kacer P, Schwarz J, Zikova N, Makes O (2016) Occup Environ Med 73:110CrossRefGoogle Scholar
  14. 14.
    Pelclova D, Zdimal V, Schwarz J, Dvorackova S, Komarc M, Ondracek J, Kostejn M, Kacer P, Vlckova S, Fenclova Z, Popov A, Lischkova L, Zakharov S, Bello D (2018) Nanomaterials 8:E611CrossRefGoogle Scholar
  15. 15.
    Pelclova D, Zdimal V, Kacer P, Komarc M, Fenclova Z, Vlckova S, Zikova N, Schwarz J, Makes O, Navratil T (2017) Rev Environ Health 32:193CrossRefGoogle Scholar
  16. 16.
    Pelclova D, Zdimal V, Kacer P, Zikova N, Komarc M, Fenclova Z, Vlckova S, Schwarz J, Makes O, Syslova K (2017) Nanotoxicology 11:52CrossRefGoogle Scholar
  17. 17.
    Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Komarc M, Navratil T, Schwarz J, Zikova N, Makes O (2016) J Breath Res 10:036004CrossRefGoogle Scholar
  18. 18.
    Muccilli V, Saletti R, Cunsolo V, Ho J, Gili E, Conte E, Sichili S, Vancheri C, Foti S (2015) J Pharm Biomed Anal 105:134CrossRefGoogle Scholar
  19. 19.
    Hayes SA, Haefliger S, Harris B, Pavlakis N, Clarke SJ, Molloy MP, Howell VM (2016) J Breath Res 10:034001CrossRefGoogle Scholar
  20. 20.
    Schulte P, Leso V, Niang M, Iavicoli I (2018) Toxicol Lett 298:112CrossRefGoogle Scholar
  21. 21.
    Bitounis D, Pourchez J, Forest V, Boudard D, Cottier M, Klein JP (2016) Biomaterials 76:302CrossRefGoogle Scholar
  22. 22.
    Muller DA, Grazul J (2001) Microsc 50:219CrossRefGoogle Scholar
  23. 23.
    MEE: Energy Dispersive X-ray Spectroscopy (EDS). https://www.mee-inc.com/hamm/energy-dispersive-x-ray-spectroscopyeds/. Downloaded 29 Oct 2018
  24. 24.
    Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Syslova K, Navratil T, Schwarz J, Zikova N, Barosova H, Turci F, Komarc M, Pelcl T, Belacek J, Kukutschova J, Zakharov S (2015) J Breath Res 10:016004CrossRefGoogle Scholar
  25. 25.
    Rosa LR, Rosa RD, da Veiga MAMS (2016) J Environ Chem Eng 4:3451CrossRefGoogle Scholar
  26. 26.
    Oliveira M, da Boit K (2018) J Clean Prod 47:188Google Scholar
  27. 27.
    Priyadarsini S, Mukherjee S, Mishra M (2017) J Oral Biol Craniofac Res 8:58CrossRefGoogle Scholar
  28. 28.
    Hentz FC Jr, Long GG (1976) J Chem Educ 53:651CrossRefGoogle Scholar
  29. 29.
    Pelclova D, Zdimal V, Komarc M, Vlckova S, Fenclova Z, Ondracek J, Schwarz J, Kostejn M, Kacer P, Dvorackova S, Popov A, Klusackova P, Zakharov S, Bello D (2018) Nanomaterials (Basel) 8:E731CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Lucie Lischkova
    • 1
    • 2
    Email author
  • Daniela Pelclova
    • 1
    • 2
  • Jiri Hlusicka
    • 1
    • 2
  • Tomas Navratil
    • 3
    • 4
  • Stepanka Vlckova
    • 1
  • Zdenka Fenclova
    • 1
    • 2
  • Stepanka Dvorackova
    • 5
  • Alexey Popov
    • 5
  • Alena Michalcova
    • 6
  • Ivo Marek
    • 6
  • Pavel Mikuska
    • 7
  • Vladimir Zdimal
    • 8
  • Martin Kostejn
    • 8
  • Jakub Ondracek
    • 8
  • Jaroslav Schwarz
    • 8
  • Sergey Zakharov
    • 1
    • 2
  1. 1.Department of Occupational Medicine, First Faculty of MedicineCharles UniversityPragueCzech Republic
  2. 2.Toxicological Information CentreGeneral University HospitalPragueCzech Republic
  3. 3.J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
  4. 4.Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of MedicineCharles University and General University Hospital in PraguePrague 2Czech Republic
  5. 5.Faculty of Mechanical Engineering, Department of Machining and Assembly, Department of Engineering Technology, Department of Material ScienceTechnical University of LiberecLiberecCzech Republic
  6. 6.Department of Metals and Corrosion EngineeringUniversity of Chemistry and TechnologyPrague 6Czech Republic
  7. 7.Institute of Analytical Chemistry of the CASBrnoCzech Republic
  8. 8.Institute of Chemical Process Fundamentals of the CASPrague 6Czech Republic

Personalised recommendations