Applicability of voltammetric determination of diclofenac at carbon paste electrodes to the analysis of aqueous solutions purified by adsorption and/or ionic liquid-based ion exchange

  • Barbora Kamenická
  • Andrea Bartášková
  • Ivan ŠvancaraEmail author
  • Tomáš WeidlichEmail author
Original Paper


This contribution summarises the results from an initial electrochemical study of anti-inflammatory drug diclofenac at carbon paste electrodes focused on the applicability to the determination of this substance in environmental samples, namely, in aqueous solutions containing diclofenac. The substance of interest could be readily oxidized at carbon paste electrodes modified in situ with cetyltrimethylammonium bromide enhancing the response of diclofenac. The respective voltammetric method has been characterised with respect to the linear range, detection capabilities, and the overall analytical performance. Applicability of the procedure developed was examined on a set of model samples polluted with diclofenac before and after treatment with charcoal and/or various lipophilic ionic liquids to define the efficiency of such purification process.

Graphical abstract


Electrochemistry Oxidations Voltammetry Surfactants Phase-transfer catalysis 



We are grateful to thank for support by Technology Agency of the Czech Republic, Project No. TH02030200. In addition, authors would like to thank Dr. Tomáš Mikysek, their colleague from the Department of Analytical Chemistry, for some valuable comments concerning the interpretation of the electrode oxidation of diclofenac.


  1. 1.
    Küster A, Adler N (2014) Philos Trans R Soc Lond 369:1656CrossRefGoogle Scholar
  2. 2.
    Sallmann AR (1986) Am J Med 80:31CrossRefGoogle Scholar
  3. 3.
    Kummerer K (2001) Pharmaceuticals in the environment: sources, fate, effects and risks. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Lonappan L, Brar SK, Das RK, Verma M, Surampalli RY (2016) Environ Intern 96:127CrossRefGoogle Scholar
  5. 5.
    Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD (2004) Aquat Toxicol 68:141CrossRefGoogle Scholar
  6. 6.
    Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler HR, Schwaiger J (2004) Aquat Toxicol 68:151CrossRefGoogle Scholar
  7. 7.
    Cherik D, Louhab K (2015) Res J Chem Environ 19:40Google Scholar
  8. 8.
    Zhang Y, Geissen SU, Gai C (2008) Chemosphere 73:1157Google Scholar
  9. 9.
    Coimbra RN, Escapa C, Paniagua S, Otero M (2016) Desal Wat Treat 57:27914Google Scholar
  10. 10.
    Lin KYA, Yang HT, Lee WD (2015) RSC Adv 99:81330Google Scholar
  11. 11.
    Madsen KG, Skonberg C, Jurva U, Cornett C, Hansen SH, Johansen TN, Olsen J (2008) J Chem Res Toxicol 21:1107CrossRefGoogle Scholar
  12. 12.
    Cid-Cerón MM, Guzmán-Hernández DS, Ramírez-Silva MT, Galano A, Romero-Romo M, Palomar-Pardavé M (2016) Electrochim Acta 199:92CrossRefGoogle Scholar
  13. 13.
    Guzmán-Hernández DS, Martínez-Cruz MA, Ramírez-Silva MT, Romero-Romo M, Corona-Avendaño S, Mendoza-Huizard LH, Palomar-Pardavé M (2016) Anal Methods 8:7868CrossRefGoogle Scholar
  14. 14.
    Daneshgar P, Norouzi P, Ganjali MR, Dinarvand R, Moosavi-Movahedi AA (2009) Sensors 9:7903CrossRefGoogle Scholar
  15. 15.
    Guzmán-Hernández DS, Cid-Cerón MM, Romero-Romo M, Ramírez-Silva MT, Páez-Hernández ME, Corona-Avendaño S, Palomar-Pardavé M (2017) RSC Adv 9:7909Google Scholar
  16. 16.
    Švancara I, Kalcher K, Walcarius A, Vytřas K (2012) Electroanalysis with carbon paste electrodes. CRC Press, Boca RatonGoogle Scholar
  17. 17.
    Tang W (2003) Curr Drug Metab 4:319CrossRefGoogle Scholar
  18. 18.
    Jörissen J, Speiser B (2015) Preparative electrolysis on the laboratory scale. In: Hammerich O, Speiser B (eds) Organic electrochemistry, vol 5. CRC Press, Boca Raton, p 263Google Scholar
  19. 19.
    Wolter KD, Stock JT (1978) J Electrochem Soc 125:531CrossRefGoogle Scholar
  20. 20.
    Digua K, Kauffmann JM, Delplancke JL (1994) Electroanalysis 6:451CrossRefGoogle Scholar
  21. 21.
    Digua K, Kauffmann J-M, Khodari M (1994) Electroanalysis 6:459CrossRefGoogle Scholar
  22. 22.
    Larous S, Meniai A-H (2016) Int J Hydrogen Energy 41:10380CrossRefGoogle Scholar
  23. 23.
    Plakas KV, Karabelas AJ (2016) Global NEST J 18:259CrossRefGoogle Scholar
  24. 24.
    Altmann J, Ruhl AS, Zietzschmann F, Jekel M (2014) Water Res 55:185CrossRefGoogle Scholar
  25. 25.
    Kamenická B, Weidlich T (2018) Fibres Text 3:37Google Scholar
  26. 26.
    Shabtai IA, Mishael YG (2016) Environ Sci Technol 50:8246CrossRefGoogle Scholar
  27. 27.
    Šimek M, Mikulášek P, Kalenda P, Weidlich T (2016) Chem Pap 70:470CrossRefGoogle Scholar
  28. 28.
    Moretto LM, Kalcher K (eds) (2014) Environmental analysis by electrochemical sensors and biosensors, vol I and II. Springer, BerlinGoogle Scholar
  29. 29.
    Vohlídal J, Julák A, Štulík K (1999) Chemical and analytical tables. Grada Publishing, Prague, p 544Google Scholar
  30. 30.
    Švancara I, Metelka R, Vytřas K (2005) Piston-driven carbon paste electrode holders for electrochemical measurements. In: Kalcher K, Vytras K (eds) Sensing in electroanalysis. Press Centre, University of Pardubice, Pardubice, p 7Google Scholar
  31. 31.
    Hach (2018) COD quide preparation. Accessed 26 Oct 2018
  32. 32.
    Hach (2018) AOX photometric determination. Accessed 30 Oct 2018
  33. 33.
    ISO 9562:2004 Water quality—determination of adsorbable organically bound halogens (AOX). Accessed 30 Oct 2018

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical Technology Group, Faculty of Chemical Technology, Institute of Environmental and Chemical EngineeringUniversity of PardubicePardubiceCzech Republic
  2. 2.Department of Analytical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations