Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 151, Issue 1, pp 1–10 | Cite as

Easy and low-cost preparation method of magnetic montmorillonite/FexOy composite: initial study for future applications

  • Michaela TokarčíkováEmail author
  • Jana Seidlerová
  • Oldřich Motyka
  • Ondřej Životský
  • Klára Drobíková
  • Kateřina Mamulová Kutláková
Original Paper
  • 36 Downloads

Abstract

Magnetic montmorillonite with FexOy nanoparticles was prepared by precipitation. The results of the leaching test showed that the magnetic montmorillonite is stable in the acidic pH. The microwave treatment and the presence of FexOy nanoparticles on the montmorillonite did not influence the montmorillonite structure or distinctive release of the monitored cations. The main goal of the present paper was to find the optimal solid-to-liquid ratio when the ionic strength remains unchanged. The influence of solid-to-liquid ratio, leaching time, initial pH of extraction agent and the variation of the ionic strength of the final extract were studied as well. The results evaluated by analysis of variance (ANOVA) showed that both the solid-to-liquid ratio and the initial pH are factors which significantly influence the release of the cations from the study materials as well as the ionic strength of final extracts.

Graphic abstract

Keywords

Mössbauer spectroscopy Clays Magnetic properties Solvent effect Microwave-assisted synthesis Eliminations 

Notes

Acknowledgements

The work was supported by ERDF/ESF New Composite Materials for Environmental Applications (No. CZ.02.1.01/0.0/0.0/17_048/0007399).

Supplementary material

706_2019_2536_MOESM1_ESM.docx (27 kb)
Supplementary file1 (DOCX 28 kb)

References

  1. 1.
    Lin S-H, Juang R-S (2002) J Hazard Mater 92:315CrossRefGoogle Scholar
  2. 2.
    Oliveira LCA, Rios RVRA, Fabris JD, Sapag K, Garg VK, Lago RM (2003) Appl Clay Sci 22:169CrossRefGoogle Scholar
  3. 3.
    Ijagbemi CHO, Baek M-H, Kim D-S (2009) J Hazard Mater 166:538CrossRefGoogle Scholar
  4. 4.
    Bhattacharya AK, Mandal SN, Das SK (2006) Chem Eng J 123:43CrossRefGoogle Scholar
  5. 5.
    Kalantari K, Ahmad MB, Masoumi HRF, Shameli K, Basri M, Khandanlou R (2015) Chem Eng 49:192Google Scholar
  6. 6.
    Sizmur T, Fresno T, Akgül G, Frost H, Moreno-Jiménez E (2017) Bioresour Technol 246:34CrossRefGoogle Scholar
  7. 7.
    Seidlerová J, Šafařík I, Rozumová L, Šafaříková M, Motyka O (2016) Procedia Mater Sci 12:147CrossRefGoogle Scholar
  8. 8.
    Lee SM, Laldawngliana C, Tiwari D (2012) Chem Eng J 195–196:103CrossRefGoogle Scholar
  9. 9.
    Mockovčiaková A, Orolínová Z, Škvarla J (2010) J Hazard Mater 180:274CrossRefGoogle Scholar
  10. 10.
    Pirillo S, Cornaglia L, Ferreira ML, Rueda EH (2008) Spectrochim Acta Part A 71:636CrossRefGoogle Scholar
  11. 11.
    Momtazi L, Bagherifam S, Singh G, Hofgaard A, Hakkarainen M, Glomm WR, Ross N, Mælandsmo GM, Griffiths G, Nyström B (2014) J Colloid Interface Sci 433:76CrossRefGoogle Scholar
  12. 12.
    Singh KK, Senapati KK, Sarma KC (2017) J Environ Chem Eng 5:2214CrossRefGoogle Scholar
  13. 13.
    Luther S, Borgfeld N, Kim J, Parsons JG (2012) Microchem J 101:30CrossRefGoogle Scholar
  14. 14.
    Safarik I, Horska K, Pospiskova K, Safarikova M (2012) Powder Technol 229:285CrossRefGoogle Scholar
  15. 15.
    Bourlinos AB, Karakassides MA, Simopoulos A, Petridis D (2000) Chem Mater 12:2640CrossRefGoogle Scholar
  16. 16.
    Gao Z, Li X, Wu H, Zhao S, Asuha S (2015) Microporous Mesoporous Mater 202:1CrossRefGoogle Scholar
  17. 17.
    Rahimi Z, Sarafraz H, Sarafraz Gh, Shirani AS (2018) J Radioanal Nucl Chem 44:722Google Scholar
  18. 18.
    Majidi S, Sehrig FZ, Farkhani SM, Goloujeh MS, Akbarzadeh A (2016) Artif Cells Nanomed Biotechnol 44:722CrossRefGoogle Scholar
  19. 19.
    Yu M, Wang L, Hu L, Li Y, Luo D, Mei S (2019) Trends Anal Chem 119:115611CrossRefGoogle Scholar
  20. 20.
    Safarik I, Safarikova M (2014) Int J Mat Res 105:104CrossRefGoogle Scholar
  21. 21.
    Tokarčíková M, Tokarský J, Kutláková KM, Seidlerová J (2017) J Solid State Chem 253:329CrossRefGoogle Scholar
  22. 22.
    Klika Z, Seidlerová J, Valášková M, Kliková CH, Kolomazník I (2016) Appl Clay Sci 132–133:41CrossRefGoogle Scholar
  23. 23.
    Tokarčíková M, Tokarský J, Čabanová K, Matějka V, Mamulová Kutláková K, Seidlerová J (2014) Compos B 67:262CrossRefGoogle Scholar
  24. 24.
    White AF, Peterson ML, Hochella MF (1994) Geochim Cosmochim Acta 58:1859CrossRefGoogle Scholar
  25. 25.
    Prince AAM, Velmurugan S, Narasimhan SV, Ramesh C, Murugesan N, Raghavan PS, Gopalan R (2001) J Nucl Mater 289:281CrossRefGoogle Scholar
  26. 26.
    Zhou Q, Wang Y, Bierwagen GP (2012) Corros Sci 55:97CrossRefGoogle Scholar
  27. 27.
    Hasson D, Bendrihem O (2006) Desalination 190:189CrossRefGoogle Scholar
  28. 28.
    Withers A (2005) Desalination 179:11CrossRefGoogle Scholar
  29. 29.
    Pospiskova K, Safarik I (2015) Mater Lett 142:184CrossRefGoogle Scholar
  30. 30.
    Valášková M, Hundáková M, Mamulová MK, Seidlerová J, Čapková P, Pazdziora E, Matějová K, Heřmánek M, Klemm V, Rafaja D (2010) Geochim Cosmochim Acta 10:6287CrossRefGoogle Scholar
  31. 31.
    Czech Office for Standards, Metrology and Testing (1992) SOP č.OAA-02-13. Nanotechnology Centre, VSB-TU, OstravaGoogle Scholar
  32. 32.
    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  • Michaela Tokarčíková
    • 1
    Email author
  • Jana Seidlerová
    • 1
  • Oldřich Motyka
    • 1
  • Ondřej Životský
    • 2
  • Klára Drobíková
    • 1
  • Kateřina Mamulová Kutláková
    • 1
  1. 1.Nanotechnology CentreVŠB-Technical University of OstravaOstrava-PorubaCzech Republic
  2. 2.Department of PhysicsVŠB-Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations