Advertisement

A catalyst coated electrode for electrochemical formaldehyde oxidation

  • 32 Accesses

Abstract

Thermally prepared catalytic coatings on a titanium substrate were composed of a mixture of nanocrystals of metallic Pt and RuO2 of rutile structure and used for electrooxidation of formaldehyde. The size of the RuO2 nanocrystals increased, whereas those of Pt decreased with increasing the content of RuO2 in the mixture. At more positive potentials, the maximum catalytic activities showed the coatings with lower content of RuO2. Mechanism of formaldehyde oxidation was derived to show two reaction pathways. In the first one, H2C(OH)2 was directly oxidized to CO2, whereas COad was formed in the latter. COad is strongly adsorbed on Pt atoms, which causes blocking of these atoms and thus, preventing direct dehydrogenation of H2C(OH)2 to CO2. The overall catalytic effect of the mixture of nanocrystals was caused by the bifunctional mechanism. Thus, the Ru atoms formed the oxy species at more negative potentials than Pt. These oxy species oxidized the COad intermediates, bound to adjacent Pt atoms and accordingly, discharged them for dehydrogenation of new molecules of H2C(OH)2.

Graphic abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Yu X, Pickup PG (2008) J Power Sources 182:124

  2. 2.

    Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) J Power Sources 111:83

  3. 3.

    Korzeniewski C, Childers CL (1998) J Phys Chem B 102:489

  4. 4.

    Guthrie JP (1975) Can J Chem 53:898

  5. 5.

    Spasojević MD, Adžić RR, Despić AR (1980) J Electroanal Chem 109:261

  6. 6.

    Adžić RR, Hofman MI, Dražić DM (1980) J Electroanal Chem 110:361

  7. 7.

    Kazarinov VE, Vassiliev YB, Andreev VN, Kuliev SA (1981) J Electroanal Chem 123:345

  8. 8.

    Olivi P, Bulhões LOS, Léger J-M, Hahn F, Beden B, Lamy C (1994) J Electroanal Chem 370:241

  9. 9.

    Olivi P, Bulhões LOS, Léger J-M, Hahn F, Beden B, Lamy C (1996) Electrochim Acta 41:927

  10. 10.

    Koper MTM, Hachkar M, Beden B (1996) J Chem Soc Faraday Trans 92:3975

  11. 11.

    Miki A, Ye S, Senzaki T, Osawa M (2004) J Electroanal Chem 563:23

  12. 12.

    Samjeské G, Miki A, Osawa M (2007) J Phys Chem C 111:15074

  13. 13.

    Avramov-Ivic M, Adzic RR, Bewick A, Razaq M (1988) J Electroanal Chem, Interfacial. Electrochem 240:161

  14. 14.

    Kitamura F, Takahashi M, Ito M (1986) Chem Phys Lett 123:273

  15. 15.

    Nishimura K, Ohnishi R, Kunimatsu K, Enyo M (1989) J Electroanal Chem, Interfacial. Electrochem 258:219

  16. 16.

    Sun SG, Lu GQ, Tian ZW (1995) J Electroanal Chem 393:97

  17. 17.

    Bełtowska-Brzezinska M, Heitbaum J, Vielstich W (1985) Electrochim Acta 30:1465

  18. 18.

    Xu Y, Schell M (1990) J Phys Chem 94:7137

  19. 19.

    Nakabayashi S, Kira A (1992) J Phys Chem 96:1021

  20. 20.

    Batista EA, Iwasita T (2006) Langmuir 22:7912

  21. 21.

    Osawa M (2001) Surface-Enhanced Infrared Absorption. In: Kawata S (ed), Near-Field Optics and Surface Plasmon Polaritons. Top. Appl. Phys, vol 81. Springer, Berlin, p 163.

  22. 22.

    Zhang Y, Zhang M, Cai Z, Chen M, Cheng F (2012) Electrochim Acta 68:172

  23. 23.

    Guo Y, Xu YT, Gao GH, Wang T, Zhao B, Fu XZ, Sun R, Wong CP (2015) Catal Commun 58:40

  24. 24.

    Yan RW, Jin BK (2013) Chin Chem Lett 24:159

  25. 25.

    Nellaiappan S, Kumar AS, Nisha S, Pillai KC (2017) Electrochim Acta 249:227

  26. 26.

    Bansal V, Li V, O’Mullane AP, Bhargava SK (2010) CrystEngComm 12:4280

  27. 27.

    Yu Y, Jia M, Tian H, Hu J (2014) J Power Sources 267:123

  28. 28.

    Li Z, Lu X, Li B, Bai L, Wang Q (2015) ECS Electrochem Lett 4:H24

  29. 29.

    Trivedi D, Crosse J, Tanti J, Cass AJ, Toghill KE (2018) Sens Actuators B 270:298

  30. 30.

    Hassaninejad-Darzi SK (2014) J Electroceram 33:252

  31. 31.

    Hasanzadeh M, Khalilzadeh B, Shadjou N, Karim-Nezhad G, Saghatforoush L, Kazeman I, Abnosi MH (2010) Electroanalysis 22:168

  32. 32.

    Yang L, Zhao F, Xiao F, Zeng B (2011) Anal Bioanal Electrochem 3:175

  33. 33.

    Raoof JB, Hosseini SR, Ojani R, Aghajani S (2015) J Mol Liq 204:106

  34. 34.

    Safavi A, Momeni S, Tohidi M (2012) Electroanalysis 24:1981

  35. 35.

    Safavi A, Farjami F (2011) Electroanalysis 23:1842

  36. 36.

    Miao F, Tao B (2013) J Nanosci Nanotechnol 13:3104

  37. 37.

    de Lima RB, Massafera MP, Batista EA, Iwasita T (2007) J Electroanal Chem 603:142

  38. 38.

    Touny AH, Tammam RH, Saleh MM (2018) Appl Catal B: Environ 224:1017

  39. 39.

    Momeni S, Sedaghati F (2018) Microchem J 143:64

  40. 40.

    Spasojevic M, Ribic-Zelenovic L, Spasojevic M, Trisovic T (2019) Russ J Electrochem 55:1350

  41. 41.

    Burke LD, O'Neill JF (1979) J Electroanal Chem, Interfacial. Electrochem 101:341

  42. 42.

    Franaszczuk K, Sobkowski J (1992) J Electroanal Chem 327:235

  43. 43.

    Spasojević MD, Krstajić NV, Jakšić MM (1987) J Mol Catal 40:311

  44. 44.

    Spasojevic M, Ribic-Zelenovic L, Spasojevic P (2012) Ceram Int 38:5827

  45. 45.

    Spasojevic M, Krstajic N, Spasojevic P, Ribic-Zelenovic L (2015) Chem Eng Res Des 93:591

  46. 46.

    Hadzi-Jordanov S, Angerstein-Kozlowska H, Vukovic M, Conway BE (1977) J Phys Chem 81:2271

  47. 47.

    Ticanelli E, Beery JG, Paffett MT, Gottesfeld S (1989) J Electroanal Chem, Interfacial. Electrochem 258:61

  48. 48.

    Capon A, Parson R (1973) J Electroanal Chem, Interfacial. Electrochem. 44:1

  49. 49.

    Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H, Watanabe M (2006) J Phys Chem B 110:23489

  50. 50.

    Rigsby MA, Zhou WP, Lewera A, Duong HT, Bagus PS, Jaegermann W, Hunger R, Wieckowski A (2008) J Phys Chem C 112:15595

  51. 51.

    Garrick TR, Diao W, Tengco JM, Stach EA, Senanayake SD, Chen DA, Monnier JR, Weidner JW (2016) Electrochim Acta 195:106

  52. 52.

    Tian M, Shi S, Shen Y, Yin H (2019) Electrochim Acta 293:390

Download references

Acknowledgements

This work has been supported by the Ministry of Education and Science of the Republic of Serbia through project Ref. No. 172057

Author information

Correspondence to Milica Spasojevic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spasojevic, M., Spasojevic, M. & Ribic-Zelenovic, L. A catalyst coated electrode for electrochemical formaldehyde oxidation. Monatsh Chem 151, 33–43 (2020). https://doi.org/10.1007/s00706-019-02533-0

Download citation

Keywords

  • Electrochemistry
  • Cyclic voltammetry
  • Nanostructures
  • X Ray structure determination
  • Catalysts
  • Formaldehyde