Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 151, Issue 1, pp 45–50 | Cite as

Electrocatalytic oxidation of zearalenone on cobalt phthalocyanine-modified screen-printed carbon electrode

  • Abd-Elgawad RadiEmail author
  • Alsayed Eissa
  • Tarek Wahdan
Original Paper
  • 74 Downloads

Abstract

The intake of food contaminated with zearalenone may prompt fertility disorders. Cobalt phthalocyanine (CoPC) could afford electrocatalytic efficiently toward a large number of analytes. In this regard, cyclic voltammetry and differential pulse voltammetry were utilized to examine the anodic behavior of zearalenone on cobalt CoPC-modified screen-printed carbon electrode (CoPC-SPCE). The results demonstrated that the CoPC-SPCEs had excellent electrocatalytic activity, involving the Co2+/Co3+ redox couple, toward the electrochemical oxidation of zearalenone. Using differential pulse voltammetry, the CoPC-SPCE exhibited a well-defined anodic peak in phosphate buffer solution of pH 7.4 at a potential of ~ 0.534 V versus Ag pseudo-ref. electrode for the oxidation of zearalenone. After optimization of the experimental conditions, a linear calibration curve over zearalenone concentration range 25–400 ng cm−3 with detection limit of 0.15 ng cm−3 was achieved. The CoPC-SPCEs accomplished excellent sensitivity, selectivity, and stability for the voltammetric determination of zearalenone in the presence of other mycotoxins. It was satisfactorily determined in food samples.

Graphic abstract

Keywords

Electrocatalysis Zearalenone Cobalt phthalocyanine Screen-printed carbon electrode Voltammetry 

Notes

References

  1. 1.
    Marin S, Ramos AJ, Cano-Sancho G, Sanchis V (2013) Food Chem Toxicol 60:218CrossRefGoogle Scholar
  2. 2.
    Stopper H, Schmitt E, Kobras K (2005) Mutat Res 574:139CrossRefGoogle Scholar
  3. 3.
    Niazi S, Khan IM, Yu Y, Pasha I, Shoaib M, Mohsin A, Mushtaq BS, Akhtar W, Wang Z (2019) Mikrochim Acta 186:575CrossRefGoogle Scholar
  4. 4.
    Llorent-Martínez EJ, Fernández-Poyatos MP, Ruiz-Medina A (2019) Talanta 191:89CrossRefGoogle Scholar
  5. 5.
    Guo Z, Wang M, Wu J, Tao F, Chen Q, Wang Q, Ouyang Q, Shi J, Zou X (2019) Food Chem 286:282CrossRefGoogle Scholar
  6. 6.
    Sun D, Li C, Zhou S, Zhao Y, Gong YY, Gong Z, Wu Y (2019) Appl Sci (Switzerland) 9:4Google Scholar
  7. 7.
    Yan Z, Wang L, Wang J, Tan Y, Yu D, Chang X, Fan Y, Zhao D, Wang C, De Boevre M, De Saeger S, Sun C, Wu A (2018) Toxins 10:3CrossRefGoogle Scholar
  8. 8.
    Foubert A, Beloglazova NV, Hedström M, De Saeger S (2019) Talanta 191:202CrossRefGoogle Scholar
  9. 9.
    Regiart M, Fernández O, Vicario A, Villarroel-Rocha J, Sapag K, Messina GA, Raba J, Bertolino FA (2018) Microchem J 141:388CrossRefGoogle Scholar
  10. 10.
    Hendrickson OD, Chertovich JO, Zherdev AV, Sveshnikov PG, Dzantiev BB (2018) Food Control 84:330CrossRefGoogle Scholar
  11. 11.
    Afzali D, Fathirad F (2016) Mikrochim Acta 183:2633CrossRefGoogle Scholar
  12. 12.
    De Andrés F, Zougagh M, Castañeda G, Ríos A (2008) J Chromatogr A 1212:54CrossRefGoogle Scholar
  13. 13.
    Nasir MZM, Pumera M (2014) Electroanalysis 26:1901CrossRefGoogle Scholar
  14. 14.
    Keller J, Haase H, Koch M (2017) World Mycotoxin J 10:297CrossRefGoogle Scholar
  15. 15.
    Martínez-Díaz MV, Ince M, Torres T (2011) Monatsh Chem 142:699CrossRefGoogle Scholar
  16. 16.
    Klusáčková M, Tarábková H, Janda P (2019) Monatsh Chem 150:1643CrossRefGoogle Scholar
  17. 17.
    Ureta-Zañartu MS, Gutiérrez C (2016) In: Bedioui F, Zagal JH (eds) Electrochemistry of N4 macrocyclic metal complexes, 2nd edn. Wiley, New YorkGoogle Scholar
  18. 18.
    Gosser DK (1993) Cyclic voltammetry: simulation and analysis of reaction mechanisms. VCH, New YorkGoogle Scholar
  19. 19.
    Laviron E (1974) J Electroanal Chem 52:355CrossRefGoogle Scholar
  20. 20.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  21. 21.
    Zuman P (2006) J Solid State Electrochem 10:841CrossRefGoogle Scholar
  22. 22.
    Radi A-E, Eissa A, Wahdan T (2019) Anal Methods 11:4494CrossRefGoogle Scholar
  23. 23.
    Maree S, Nyokong T (2000) J Electroanal Chem 492:120CrossRefGoogle Scholar
  24. 24.
    Cruz Moraes F, Cabral MF, Machado SA, Mascaro LH (2008) Electroanalysis 20:851CrossRefGoogle Scholar
  25. 25.
    Caro CA, Bedioui F, Zagal JH (2002) Electrochim Acta 47:1489CrossRefGoogle Scholar
  26. 26.
    Isaacs M, Aguirre MJ, Toro-Labbé A, Costamagna J, Páez M, Zagal JH (1998) Electrochim Acta 43:1821CrossRefGoogle Scholar
  27. 27.
    Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Coord Chem Rev 254:2755CrossRefGoogle Scholar
  28. 28.
    Zagal JH, Lira S, Ureta-Zañartu S (1986) J Electroanal Chem 210:95CrossRefGoogle Scholar
  29. 29.
    Long GL, Winefordner JD (1983) Anal Chem 55:712ACrossRefGoogle Scholar
  30. 30.
    Richard JL (2007) Int J Food Microbiol 119:3CrossRefGoogle Scholar
  31. 31.
    Weidenbörner M (2001) Encyclopedia of food mycotoxins. Springer, BerlinCrossRefGoogle Scholar
  32. 32.
    Jestoi M (2008) Crit Rev Food Sci Nutr 48:21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceDamietta UniversityDamiettaEgypt
  2. 2.Department of Chemistry, Faculty of ScienceEl-Arish UniversityEl-ArishEgypt

Personalised recommendations