Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 12, pp 2071–2080 | Cite as

Specific effects and features of a combination of amine-containing antibacterial agents and silver nanoparticles stabilized by dicarboxylic acid copolymers

  • Nadezhda SamoilovaEmail author
  • Maria Krayukhina
  • Dmitry Popov
  • Nelya Anuchina
Original Paper
  • 55 Downloads

Abstract

Various types of combinations of amine-containing antibacterial agents (heterocyclic and macrocyclic antibiotics, protein and peptide antibiotics, D-amino acids) and silver nanoparticles stabilized by dicarboxylic (maleic) acid copolymers (AgNPs) are obtained. The study demonstrated the specific action of the conjugates on the planktonic form of gram-positive and gram-negative microorganisms, and fungi. The antimicrobial properties of the conjugates depend on the structures of the AgNPs stabilizing shell, antibacterial agent, and the cell membrane of the pathogen. The polymer shell of the metal nanoparticles allowed to solubilize hydrophobic antibiotics due to the formation of covalent and non-covalent complexes. A pronounced synergistic antimicrobial effect was observed, when AgNPs were combined with hydrophobic amine-containing antibiotics: rifampin—against Staphylococcus aureus and amphotericin B—against Candida albicans. In these cases, the values of Fractional Inhibitory Concentration Indices were lower than 0.5. A pronounced positive bactericidal effect was observed, when using conjugates of AgNPs and a peptide antibiotic (vancomycin) against Enterococcus faecalis, as well as a protein (lysozyme) and D-amino acids against the variety of microorganisms.

Graphic abstract

Keywords

Silver nanoparticles Maleic acid copolymers Antimicrobial activity Antibiotics 

Notes

Acknowledgements

This work was performed with the financial support from Ministry of Science and Higher Education of the Russian Federation using the equipment of Center for molecular composition studies of INEOS RAS.

Supplementary material

706_2019_2523_MOESM1_ESM.docx (421 kb)
Supplementary material 1 (DOCX 420 kb)

References

  1. 1.
    Zhou X, Friedrich AW, Bathoorn E (2017) Front Microbiol 8:2128PubMedPubMedCentralGoogle Scholar
  2. 2.
    Zaman S, Hussain M, Nye R, Mehta V, Mamun KT, Hossain NA (2017) Cureus 9:e1403PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ravishankar RV, Jamuna BA (2011) Science against microbial pathogens: communicating current research and technological advances. In: Méndez-Vilas (ed), FORMATEX, p 197Google Scholar
  4. 4.
    Oktar FN, Yetmez M, Ficai D, Ficai A, Dumitru F, Pica A (2015) Curr Topics Med Chem 15:1583Google Scholar
  5. 5.
    Singh R, Sreedharan SM, Singh SP (2014) J Nanosci Nanotechnol 14:4745PubMedGoogle Scholar
  6. 6.
    Taylor EN, Kummer KM, Durmus NG, Leuba K, Tarquinio KM, Webster TJ (2012) Small 8:3016PubMedGoogle Scholar
  7. 7.
    Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ (2010) Int J Nanomed 5:277Google Scholar
  8. 8.
    Fayaz AM, Girilal M, Rahman M, Venkatesan R, Kalaichelvan PT (2011) Proc Biochem 46:1958Google Scholar
  9. 9.
    Adegboyega NF, Sharma VK, Siskova KM, Vecerova R, Kolar M, Zbořil R, Gardea-Torresdey JL (2014) Environ Sci Technol 48:3228PubMedGoogle Scholar
  10. 10.
    Christena LR, Mangalagowri V, Pradheeba P, Ahmed KBA, Shalini BIS, Vidyalakshmi M, Anbazhagana V, Sai subramanian N (2015) RSC Adv 5:12899Google Scholar
  11. 11.
    Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R (2013) Biometals 26:609Google Scholar
  12. 12.
    Burdusel A-C, Gherasim O, Grumezescu AM, Mogoanta L, Ficai A, Andronescu E (2018) Nanomaterials 8:681PubMedCentralGoogle Scholar
  13. 13.
    Durán N, Durán M, Bispo de Jesus M, Seabra AB, Fávaro WJ, Nakazato G (2016) Nanomedicine 12:789Google Scholar
  14. 14.
    Kora AJ, Rastogi L (2013) Bioinorg Chem Appl 2013:871097PubMedPubMedCentralGoogle Scholar
  15. 15.
    Samoilova N, Kurskaya E, Krayukhina M, Askadsky A, Yamskov I (2009) J Phys Chem B 113:3395PubMedGoogle Scholar
  16. 16.
    Winek CL, Burgun JJ (1977) Clinic Toxicol 10:255Google Scholar
  17. 17.
    Karakus G, Zengin HB, Polat ZA, Yenidunya AF, Aydin S (2013) Polym Bull 70:1591Google Scholar
  18. 18.
    Samoilova NA, Krayukhina MA, Novikova SP, Babushkina TA, Volkov IO, Komarova LI, Moukhametova LI, Aisina RB, Obraztsova EA, Yaminsky IV, Yamskov IA (2007) J Biomed Mater Res 82A:589Google Scholar
  19. 19.
    Samoilova NA, Krayukhina MA, Vyshivannaya OV, Blagodatskikh IV, Popov DA, Anuchina NM, Yamskov IA (2018) Russ Chem Bull 67:1010Google Scholar
  20. 20.
    Samoilova NA, Krayukhina MA, Popov DA, Anuchina NM, Yamskov IA (2015) Biotekhnologiya 1:75Google Scholar
  21. 21.
    Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian SS (2007) Nanomedicine 3:168Google Scholar
  22. 22.
    Samoilova NA, Krayukhina MA, Popov DA, Anuchina NM, Piskarev VE (2018) Biointerface Res Appl Chem 8:3095Google Scholar
  23. 23.
    Cabeen MT, Jacobs-Wanger C (2005) Nat Rev Microbiol 3:601PubMedGoogle Scholar
  24. 24.
    Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Nanotechnol 18:225103Google Scholar
  25. 25.
    Koneman EW, Allen SD (1997) Color atlas and textbook of diagnostic microbiology, 5th edn. Lippincott, Philadelphia, p 785Google Scholar
  26. 26.
    Ruden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich AS (2009) Antimicrob Agents Chemother 53:3538PubMedPubMedCentralGoogle Scholar
  27. 27.
    Liu W, Li LP, Zhang JD (2014) PLoS One 9:e103442PubMedPubMedCentralGoogle Scholar
  28. 28.
    Gupta A, Saleh NM, Das R, Landis RF, Bigdeli A, Motamedchaboki K, Campos AR, Pomeroy K, Mahmoudi M, Rotello VM (2017) Nano Futures 1:015004Google Scholar
  29. 29.
    Konaté K, Mavoungou JF, Lepengué AN, Aworet-Samseny RRR, Hilou A, Souza A, Dicko MH, M’batchi B (2012) Ann Clin Microbiol Antimicrob 11:18Google Scholar
  30. 30.
    Sadiki M, Balouipi M, Barkai H, Maataoui H, Ibnsoudkoraichi S, Elabed S (2014) Intern J Pharm Pharm Sci 6:121Google Scholar
  31. 31.
    Choi S-M, Jang E-J, Cha J-D (2015) Adv Biosci Biotechnol 6:275Google Scholar
  32. 32.
    Climo MW, Patron L, Archer GL (1999) Antimicrob Agents Chemother 43:1747PubMedPubMedCentralGoogle Scholar
  33. 33.
    Cha JD, Lee JH, Choi KM, Choi SM, Park JH (2014) Evid Based Complement Alternat Med 2014:450572PubMedPubMedCentralGoogle Scholar
  34. 34.
    Odds FC (2003) J Antimicrob Chemother 52:1PubMedGoogle Scholar
  35. 35.
    Eliopoulos GM, Moellering RC (1996) Antibiotics. In: Lorian V (ed) Laboratory medicine, 4th edn. Williams and Wilkins, Baltimore, p 330Google Scholar
  36. 36.
    Bassole IHN, Juliani HR (2012) Molecules 17:3989PubMedPubMedCentralGoogle Scholar
  37. 37.
    Bardaweel SK, Darwish RM, Alzweiri MH, Al-Hiari Y (2014) Jordan J Pharm Sci 7:199Google Scholar
  38. 38.
    Rasigade JP, Vandenesch F (2014) Infect Genet Evol 21:510PubMedGoogle Scholar
  39. 39.
    Wan G, Ruan L, Yin Y, Yang T, Ge M, Cheng X (2016) Int J Nanomed 11:3789Google Scholar
  40. 40.
    Halbandge SD, Mortale SP, Karuppayil SM (2017) Open Nanomed J 4:1Google Scholar
  41. 41.
    Tutaj K, Szlazak R, Szalapata K, Starzyk J, Luchowski R, Grudzinski W, Osinska-Jaroszuk M, Jarosz-Wilkolazka A, Szuster-Ciesielska A, Gruszecki WI (2016) Nanomedicine 12:1095Google Scholar
  42. 42.
    Manchenko GP (1994) Lysozyme. Handbook of detection of enzymes on electrophoretic gels. CRC Press, Boca Raton, p 223Google Scholar
  43. 43.
    Dehkordi SSS, Rohani SMR, Tajik H, Moradi M, Aliakbarlou J (2008) J Anim Vet Adv 7:1458Google Scholar
  44. 44.
    Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK (2009) Science 325:1552PubMedPubMedCentralGoogle Scholar
  45. 45.
    Cava F, Lam H, de Pedro MA, Waldor MK (2011) Cell Mol Life Sci 68:817PubMedGoogle Scholar
  46. 46.
    Aliashkevich A, Alvarez L, Cava F (2018) Front Microbiol 9:683PubMedPubMedCentralGoogle Scholar
  47. 47.
    Ampornaramveth RS, Akeatichod N, Lertnukkhid J, Songsang N (2018) Int J Dent 2018:9413925PubMedPubMedCentralGoogle Scholar
  48. 48.
    Sanchez CJ, Akers KS, Romano DR, Woodbury RL, Hardy SK, Murray CK, Wenke JC (2014) Antimicrob Agents Chemother 58:4353PubMedPubMedCentralGoogle Scholar
  49. 49.
    Conix A, Smets G (1995) J Polym Sci Part A-Polym Chem 15:221Google Scholar
  50. 50.
    Clinical and Laboratory Standards Institute (2012) Approved Standard, 9th edn. CLSI document M07-A9, vol. 32 M07-A9, Clinical and Laboratory Standards Institute, Wayne, PA, p 1Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Nadezhda Samoilova
    • 1
    Email author
  • Maria Krayukhina
    • 1
  • Dmitry Popov
    • 2
  • Nelya Anuchina
    • 2
  1. 1.A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of SciencesMoscowRussian Federation
  2. 2.Federal State Budget Institution “A.N. Bakulev National Medical Research Center of Cardiovascular Surgery” of the Ministry of Health of the RussianMoscowRussian Federation

Personalised recommendations