Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 12, pp 2061–2070 | Cite as

Biophysical and computational approaches to unravel the molecular interaction mechanism of bromodeoxyuridine, a proliferative marker with human serum albumin

  • Amira Adlin Roslan
  • Salanee Kandandapani
  • Nor Farrah Wahidah Ridzwan
  • Saharuddin B. Mohamad
  • Saad TayyabEmail author
Original Paper
  • 29 Downloads

Abstract

The interaction of a nucleoside analogue bromodeoxyuridine (BrdU) with human serum albumin (HSA) was studied to investigate the binding phenomenon and analyse the protein conformation upon BrdU binding. Multiple spectroscopic techniques, viz. intrinsic and 3-D fluorescence, UV–Vis absorption, and circular dichroism (CD) spectroscopy along with molecular docking were used. Decrease in the Stern–Volmer constant (Ksv) as well as the association constant (Ka) with increase in temperature suggested BrdU–HSA complex formation. Intermediate binding affinity between BrdU and HSA was evident from the Ka values (2.49–3.97 × 104 mol–1 dm3), while BrdU–HSA complex formation was driven by hydrophobic and van der Waals interactions along with hydrogen bonds, as revealed by thermodynamic data (ΔS = + 28.48 J mol−1 K−1; ΔH = − 17.16 kJ mol−1). Minor changes occur in both secondary and tertiary structures as well as in the fluorophores’ microenvironment of HSA, as recognized from the CD spectral results in the far-UV and the near-UV regions and 3-D fluorescence spectra, respectively. Use of site markers (warfarin and indomethacin for site I; diazepam for site II) as well as docking results suggested BrdU binding to both site I (more preferred) and site II, located in subdomains IIA and IIIA, respectively, of HSA.

Graphic abstract

Keywords

Bromodeoxyuridine Human serum albumin Drug–protein interaction Fluorescence quenching Molecular modelling 

Notes

Acknowledgements

This work was financially supported by the Frontier Science Research Cluster (FSRC) (FG025-17-AFR) approved by the Institut Pengurusan dan Pemantauan Penyelidikan, University of Malaya. We thank the Dean, Faculty of Science and the Head, Institute of Biological Sciences, University of Malaya, for providing necessary facilities to carry out this work.

Supplementary material

706_2019_2518_MOESM1_ESM.docx (171 kb)
Supplementary material 1 (DOCX 171 kb)

References

  1. 1.
    Wigler PW, Lozzio CB (1972) J Med Chem 15:1020CrossRefGoogle Scholar
  2. 2.
    Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Nat Rev Drug Discov 12:447CrossRefGoogle Scholar
  3. 3.
    Galmarini CM, Mackey JR, Dumontet C (2002) Lancet Oncol 3:415CrossRefGoogle Scholar
  4. 4.
    Eyer L, Nechka R, Clercq E, Seley-Radtke K, Ruzek D (2018) Antivir Chem Chemother 26:1CrossRefGoogle Scholar
  5. 5.
    Nakamura S, Takeda Y, Kanno M, Yoshida T, Ohtake S, Kobayashi K, Okabe Y, Matsuda T (1991) Oncology 48:285CrossRefGoogle Scholar
  6. 6.
    Lengronne A, Pasero P, Bensimon A, Schwob E (2001) Nucleic Acids Res 7:1433CrossRefGoogle Scholar
  7. 7.
    Levkoff LH, Marshall GP, Ross HH, Caldeira M, Reynolds BA, Cakiroglu M, Mariani CL, Streit WJ, Laywell ED (2008) Neoplasia 10:804CrossRefGoogle Scholar
  8. 8.
    Hill B, Tsuboi A, Baserg R (1974) Proc Natl Acad Sci 71:455CrossRefGoogle Scholar
  9. 9.
    Kuhn HG, Cooper-Kuhn CM (2007) Curr Pharm Biotechnol 8:127CrossRefGoogle Scholar
  10. 10.
    Mothi N, Muthu SA, Kale A, Ahmad B (2005) Biophys Chem 207:30CrossRefGoogle Scholar
  11. 11.
    Kragh-Hansen U, Chuan VTG, Otagiri M (2002) Biol Pharm Bull 25:695CrossRefGoogle Scholar
  12. 12.
    Hu YJ, Ou-Yang Y, Dai CM, Liu Y, Xiao XH (2010) Biomacromolecules 11:106CrossRefGoogle Scholar
  13. 13.
    Sudlow G, Birkett DJ, Wade DN (1975) Mol Pharm 11:824Google Scholar
  14. 14.
    El Kadi N, Taulier N, Le-Huerou JY, Gindre M, Urbach W, Nwigwe I, Kahn PC, Waks M (2006) Biophys J 9:3397CrossRefGoogle Scholar
  15. 15.
    Shahabadi N, Akbari A, Jamshidbeigi M, Fili SM (2017) Luminescence 32:1319CrossRefGoogle Scholar
  16. 16.
    Kabir MZ, Tee WV, Mohamad SB, Alias Z, Tayyab S (2017) Spectrochim Acta A Mol Biomol Spectrosc 181:254CrossRefGoogle Scholar
  17. 17.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  18. 18.
    Abou-Zied OK, Al-Shihi OI (2008) J Am Chem Soc 130:10793CrossRefGoogle Scholar
  19. 19.
    Bi S, Ding L, Tian Y, Song D, Zhou X, Liu X, Zhang H (2004) J Mol Struct 703:37CrossRefGoogle Scholar
  20. 20.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785CrossRefGoogle Scholar
  21. 21.
    Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) J Cheminform 4:17CrossRefGoogle Scholar
  22. 22.
    Halgren TA (1996) J Comput Chem 17:490CrossRefGoogle Scholar
  23. 23.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605CrossRefGoogle Scholar
  24. 24.
    Bell KL, Brenner HC (1982) Biochemistry 21:799CrossRefGoogle Scholar
  25. 25.
    Peters T (1996) All about albumin: biochemistry, genetics, and medical applications. Academic Press, San DiegoGoogle Scholar
  26. 26.
    Zheng X, Li Z, Podariu MI, Hage DS (2014) Anal Chem 86:6454CrossRefGoogle Scholar
  27. 27.
    Zsila F, Fitos I, Bencze G, Keri G, Orfi L (2009) Curr Med Chem 16:1964CrossRefGoogle Scholar
  28. 28.
    Kabir MZ, Tee WV, Mohamad SB, Alias Z, Tayyab S (2016) RSC Adv 6:91756CrossRefGoogle Scholar
  29. 29.
    Fu L, Liu XF, Zhou QX, Zhang JX, Dong JY, Wang JF (2014) J Lumin 149:208CrossRefGoogle Scholar
  30. 30.
    Ross PD, Subramanian S (1981) Biochemistry 20:3096CrossRefGoogle Scholar
  31. 31.
    Bortolotti A, Wong YH, Korsholm SS, Bahring NHB, Bobone S, Tayyab S, van de Weert M, Stella L (2016) RSC Adv 6:112870CrossRefGoogle Scholar
  32. 32.
    Layton CJ, Hellinga HW (2010) Biochemistry 49:10831CrossRefGoogle Scholar
  33. 33.
    Zaroog MS, Tayyab S (2012) Process Biochem 47:775CrossRefGoogle Scholar
  34. 34.
    Hoang H, Manyanga F, Morakinyo MK, Pinkert V, Sarwary F, Fish DJ, Brewood GP, Benight AS (2016) J Biophys Chem 7:9CrossRefGoogle Scholar
  35. 35.
    Affandi ISM, Lee WQ, Feroz SR, Mohamad SB, Tayyab S (2017) J Biomol Struct Dyn 35:3581CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Amira Adlin Roslan
    • 1
  • Salanee Kandandapani
    • 1
  • Nor Farrah Wahidah Ridzwan
    • 2
  • Saharuddin B. Mohamad
    • 2
    • 3
  • Saad Tayyab
    • 1
    • 3
    Email author
  1. 1.Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Bioinformatics Programme, Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  3. 3.Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and HealthcareUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations