Biophysical and computational approaches to unravel the molecular interaction mechanism of bromodeoxyuridine, a proliferative marker with human serum albumin
- 29 Downloads
Abstract
The interaction of a nucleoside analogue bromodeoxyuridine (BrdU) with human serum albumin (HSA) was studied to investigate the binding phenomenon and analyse the protein conformation upon BrdU binding. Multiple spectroscopic techniques, viz. intrinsic and 3-D fluorescence, UV–Vis absorption, and circular dichroism (CD) spectroscopy along with molecular docking were used. Decrease in the Stern–Volmer constant (Ksv) as well as the association constant (Ka) with increase in temperature suggested BrdU–HSA complex formation. Intermediate binding affinity between BrdU and HSA was evident from the Ka values (2.49–3.97 × 104 mol–1 dm3), while BrdU–HSA complex formation was driven by hydrophobic and van der Waals interactions along with hydrogen bonds, as revealed by thermodynamic data (ΔS = + 28.48 J mol−1 K−1; ΔH = − 17.16 kJ mol−1). Minor changes occur in both secondary and tertiary structures as well as in the fluorophores’ microenvironment of HSA, as recognized from the CD spectral results in the far-UV and the near-UV regions and 3-D fluorescence spectra, respectively. Use of site markers (warfarin and indomethacin for site I; diazepam for site II) as well as docking results suggested BrdU binding to both site I (more preferred) and site II, located in subdomains IIA and IIIA, respectively, of HSA.
Graphic abstract
Keywords
Bromodeoxyuridine Human serum albumin Drug–protein interaction Fluorescence quenching Molecular modellingNotes
Acknowledgements
This work was financially supported by the Frontier Science Research Cluster (FSRC) (FG025-17-AFR) approved by the Institut Pengurusan dan Pemantauan Penyelidikan, University of Malaya. We thank the Dean, Faculty of Science and the Head, Institute of Biological Sciences, University of Malaya, for providing necessary facilities to carry out this work.
Supplementary material
References
- 1.Wigler PW, Lozzio CB (1972) J Med Chem 15:1020CrossRefGoogle Scholar
- 2.Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Nat Rev Drug Discov 12:447CrossRefGoogle Scholar
- 3.Galmarini CM, Mackey JR, Dumontet C (2002) Lancet Oncol 3:415CrossRefGoogle Scholar
- 4.Eyer L, Nechka R, Clercq E, Seley-Radtke K, Ruzek D (2018) Antivir Chem Chemother 26:1CrossRefGoogle Scholar
- 5.Nakamura S, Takeda Y, Kanno M, Yoshida T, Ohtake S, Kobayashi K, Okabe Y, Matsuda T (1991) Oncology 48:285CrossRefGoogle Scholar
- 6.Lengronne A, Pasero P, Bensimon A, Schwob E (2001) Nucleic Acids Res 7:1433CrossRefGoogle Scholar
- 7.Levkoff LH, Marshall GP, Ross HH, Caldeira M, Reynolds BA, Cakiroglu M, Mariani CL, Streit WJ, Laywell ED (2008) Neoplasia 10:804CrossRefGoogle Scholar
- 8.Hill B, Tsuboi A, Baserg R (1974) Proc Natl Acad Sci 71:455CrossRefGoogle Scholar
- 9.Kuhn HG, Cooper-Kuhn CM (2007) Curr Pharm Biotechnol 8:127CrossRefGoogle Scholar
- 10.Mothi N, Muthu SA, Kale A, Ahmad B (2005) Biophys Chem 207:30CrossRefGoogle Scholar
- 11.Kragh-Hansen U, Chuan VTG, Otagiri M (2002) Biol Pharm Bull 25:695CrossRefGoogle Scholar
- 12.Hu YJ, Ou-Yang Y, Dai CM, Liu Y, Xiao XH (2010) Biomacromolecules 11:106CrossRefGoogle Scholar
- 13.Sudlow G, Birkett DJ, Wade DN (1975) Mol Pharm 11:824Google Scholar
- 14.El Kadi N, Taulier N, Le-Huerou JY, Gindre M, Urbach W, Nwigwe I, Kahn PC, Waks M (2006) Biophys J 9:3397CrossRefGoogle Scholar
- 15.Shahabadi N, Akbari A, Jamshidbeigi M, Fili SM (2017) Luminescence 32:1319CrossRefGoogle Scholar
- 16.Kabir MZ, Tee WV, Mohamad SB, Alias Z, Tayyab S (2017) Spectrochim Acta A Mol Biomol Spectrosc 181:254CrossRefGoogle Scholar
- 17.Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
- 18.Abou-Zied OK, Al-Shihi OI (2008) J Am Chem Soc 130:10793CrossRefGoogle Scholar
- 19.Bi S, Ding L, Tian Y, Song D, Zhou X, Liu X, Zhang H (2004) J Mol Struct 703:37CrossRefGoogle Scholar
- 20.Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785CrossRefGoogle Scholar
- 21.Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) J Cheminform 4:17CrossRefGoogle Scholar
- 22.Halgren TA (1996) J Comput Chem 17:490CrossRefGoogle Scholar
- 23.Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605CrossRefGoogle Scholar
- 24.Bell KL, Brenner HC (1982) Biochemistry 21:799CrossRefGoogle Scholar
- 25.Peters T (1996) All about albumin: biochemistry, genetics, and medical applications. Academic Press, San DiegoGoogle Scholar
- 26.Zheng X, Li Z, Podariu MI, Hage DS (2014) Anal Chem 86:6454CrossRefGoogle Scholar
- 27.Zsila F, Fitos I, Bencze G, Keri G, Orfi L (2009) Curr Med Chem 16:1964CrossRefGoogle Scholar
- 28.Kabir MZ, Tee WV, Mohamad SB, Alias Z, Tayyab S (2016) RSC Adv 6:91756CrossRefGoogle Scholar
- 29.Fu L, Liu XF, Zhou QX, Zhang JX, Dong JY, Wang JF (2014) J Lumin 149:208CrossRefGoogle Scholar
- 30.Ross PD, Subramanian S (1981) Biochemistry 20:3096CrossRefGoogle Scholar
- 31.Bortolotti A, Wong YH, Korsholm SS, Bahring NHB, Bobone S, Tayyab S, van de Weert M, Stella L (2016) RSC Adv 6:112870CrossRefGoogle Scholar
- 32.Layton CJ, Hellinga HW (2010) Biochemistry 49:10831CrossRefGoogle Scholar
- 33.Zaroog MS, Tayyab S (2012) Process Biochem 47:775CrossRefGoogle Scholar
- 34.Hoang H, Manyanga F, Morakinyo MK, Pinkert V, Sarwary F, Fish DJ, Brewood GP, Benight AS (2016) J Biophys Chem 7:9CrossRefGoogle Scholar
- 35.Affandi ISM, Lee WQ, Feroz SR, Mohamad SB, Tayyab S (2017) J Biomol Struct Dyn 35:3581CrossRefGoogle Scholar