Extractive stripping voltammetry at carbon paste electrodes for determination of biologically active organic compounds

  • Milan SýsEmail author
  • Amir Shaaban Farag
  • Ivan Švancara


In this review, procedures based on extraction accumulation into carbon pastes as main principle of voltammetric determination of biologically active organic compounds are summarized for the first time. This combination is commonly presented as rapid, effective, and advantageous alternative to standard analytical methods based on chromatographic and spectrometric principles. However, to date, a comprehensive review focusing exclusively on different applications of extractive stripping voltammetry has not been reported yet. Herein, the main attention is paid to the principles of extraction-based methods, and all the important factors, working conditions, and parameters influencing more or less the respective analytical performance, including the task of often extraordinary selectivity and good detection capabilities. Various properties as sensitivity, experimental arrangement, scope of application, and theoretical background are also assessed and critically commented. As a point of special importance, medium-exchange procedures are surveyed and shown as effective tools offering a very high selectivity and well applicable in clinical and pharmaceutical analysis. It is assumed that presented information can contribute to a wider applicability of extractive stripping voltammetry, helping in the development of other methods based on these still nonconventional stripping voltammetric procedures. This review also contains a systematic part, in which various methods and approaches of this kind that have already been published, concerning various biologically active organic compounds, such as alkaloids, terpenoids, amino acids, hormones, fat-soluble vitamins, food additives, pesticides, and pharmaceuticals.

Graphical abstract


Carbon paste electrode Extraction and extractive stripping voltammetry Methods and applications Survey and commentary 



The support received from the Faculty of Chemical Technology, University of Pardubice (project No. SGS-2018-001) is gratefully acknowledged.


  1. 1.
    Švancara I, Vytřas K, Kalcher K, Walcarius A, Wang J (2009) Electroanalysis 21:7CrossRefGoogle Scholar
  2. 2.
    Sun D, Zhang H (2006) Anal Chim Acta 557:64CrossRefGoogle Scholar
  3. 3.
    Chambers CAH, Lee JK (1967) J Electroanal Chem 14:309CrossRefGoogle Scholar
  4. 4.
    Wang J, Deshmukh BK, Bonakdar M (1985) J Electroanal Chem 194:339CrossRefGoogle Scholar
  5. 5.
    Wang J, Freiha BA (1984) Anal Chem 56:849CrossRefGoogle Scholar
  6. 6.
    Wang J, Freiha BA (1983) Anal Chem 55:1285CrossRefGoogle Scholar
  7. 7.
    Kharitonov SV (2007) Russ Chem Rev 76:361CrossRefGoogle Scholar
  8. 8.
    Wang J, Luo DB (1984) J Electroanal Chem 179:251CrossRefGoogle Scholar
  9. 9.
    Zoulis NE, Nikolelis DP, Efstathiou CE (1990) Analyst 115:291PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Cookeas EG, Efstathiou CE (1992) Analyst 117:1329CrossRefGoogle Scholar
  11. 11.
    Rosecká K, Mikysek T, Švancara I (2014) Electrochemical determination of myristicin using a carbon paste electrode. In: Navrátil T, Fojta M, Pecková K (eds) XXXIV. Moderní elektrochemické metody. Best Servis Ústí nad Labem, p 135Google Scholar
  12. 12.
    Nissim R, Compton RG (2015) Chem Cent J 9:41PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wang J, Bonakdar M (1985) Anal Lett 18:2569CrossRefGoogle Scholar
  14. 14.
    Sýs M, Vytřas K (2016) Electrochemical study of factors affecting reproducibility of capsaicin extraction into carbon pastes. In: Fischer J, Kellner J, Vytřas K (eds), Monitorování cizorodých látek v životním prostředí XVIII. Univerzita Pardubice, p 141Google Scholar
  15. 15.
    Mofidi Z, Norouzi P, Seidi S, Ganjaliab MR (2017) New J Chem 41:13567CrossRefGoogle Scholar
  16. 16.
    Mofidi Z, Norouzi P, Sajadian M, Ganjaliab MR (2018) J Sep Sci 41:1644PubMedCrossRefGoogle Scholar
  17. 17.
    Mofidi Z, Norouzi P, Seidi S, Ganjaliab MR (2017) Anal Chim Acta 972:38PubMedCrossRefGoogle Scholar
  18. 18.
    Mofidi Z, Esmaeili C, Norouzi P, Seidi S, Ganjali MR (2018) J Electrochem Soc 165:205CrossRefGoogle Scholar
  19. 19.
    Tuzhi P, Zhongping Y, Rongshn L (1990) Chem J Chin U 11:1067Google Scholar
  20. 20.
    Radi A (1999) Anal Commun 36:43CrossRefGoogle Scholar
  21. 21.
    Sýs M, Švecová B, Švancara I, Metelka R (2017) Food Chem 229:621PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sýs M, Žabčíková S, Červenka L, Vytřas K (2017) Potr S J F Sci 11:96Google Scholar
  23. 23.
    Hart JP, Wring SA (1989) Analyst 114:933PubMedCrossRefGoogle Scholar
  24. 24.
    Ðorđević J, Papp Z, Guzsvány V, Švancara I, Trtić-Petrović T, Purenović M, Vytřas K (2012) Sensors 12:148PubMedCrossRefGoogle Scholar
  25. 25.
    Radi A (2001) J Pharm Biomed Anal 24:413PubMedCrossRefGoogle Scholar
  26. 26.
    Wang J, Freiha BA, Deshmukh BK (1985) Bioelectrochem Bioenerg 14:457CrossRefGoogle Scholar
  27. 27.
    Vanýsek P (1995) Electrochim Acta 40:2841CrossRefGoogle Scholar
  28. 28.
    Rice NM, Irving HMNH, Leonard MA (1993) Pure App Chem 65:2373CrossRefGoogle Scholar
  29. 29.
    Sangster J (1989) J Phys Chem Ref Data 18:1111CrossRefGoogle Scholar
  30. 30.
    Sýs M, Vytřas K (2016) Sci Pap Univ Pardubice Ser A 22:35Google Scholar
  31. 31.
    Ramesh P, Suresh GS, Sampath S (2004) J Electroanal Chem 561:173CrossRefGoogle Scholar
  32. 32.
    Hagen WR (1989) Eur J Biochem 182:523PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Moore RR, Banks CE, Compton RG (2004) Anal Chem 76:2677PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zhao Q, Gan Z, Zhuang Q (2002) Electroanalysis 14:1609CrossRefGoogle Scholar
  35. 35.
    Zhang LL, Zhou R, Zhao XS (2010) J Mater Chem 20:5983CrossRefGoogle Scholar
  36. 36.
    Shen L, Wang J, Xu G, Li H, Dou H, Zhang X (2015) Adv Energy Mater 5:1400977CrossRefGoogle Scholar
  37. 37.
    Xu C, Cheng L, Shen P, Liu Y (2007) Electrochem Commun 9:997CrossRefGoogle Scholar
  38. 38.
    Barek J, Muck A, Wang J, Zima J (2004) Sensors 4:47CrossRefGoogle Scholar
  39. 39.
    Sýs M, Stočes M, Metelka R, Vytřas K (2016) Monatsh Chem 147:31CrossRefGoogle Scholar
  40. 40.
    Rivas GA, Rubianes MD, Pedano ML, Ferreyra NF, Luque GL, Rodríguez MC, Miscoria SA (2007) Electroanalysis 19:823CrossRefGoogle Scholar
  41. 41.
    Gasnier A, Pedano ML, Rubianes MD, Rivas GA (2013) Sens Actuators B 176:921CrossRefGoogle Scholar
  42. 42.
    Švancara I, Schachl K (1999) Chem Listy 93:490Google Scholar
  43. 43.
    Švancara I, Konvalina J, Schachl K, Kalcher K, Vytřas K (1998) Electroanal 10:435CrossRefGoogle Scholar
  44. 44.
    Mikysek T, Stočes M, Javanovski J, Sopha H, Švancara I, Ludvík J (2011) Relation between the composition and properties of carbon ionic liquid electrodes (CILEs). In: Kalcher K, Metelka R, Švancara I, Vytřas K (eds), Sensing in electroanalysis. Univerzita Pardubice, p 157Google Scholar
  45. 45.
    Fan K, Wu J (2013) Anal Methods–UK 5:5146Google Scholar
  46. 46.
    He Q, Fei J, Hu S (2003) Anal Sci 19:681PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Wang A, Chung DDL (2014) Carbon 72:135CrossRefGoogle Scholar
  48. 48.
    Mikysek T, Švancara I, Kalcher K, Bartoš M, Vytřas K, Ludvík J (2009) Anal Chem 81:6327PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Rubianes MD, Rivas GA (2003) Electrochem Commun 5:689CrossRefGoogle Scholar
  50. 50.
    Sýs M, Jashari G, Arbneshi T, Metelka R, Švancara I, Vytřas K (2017) Effect of pasting liquids on the extraction of vitamin K1. In: Navrátil T, Fojta M, Schwarzová K (eds) XXXVII Moderní elektrochemické metody Best Serviss Ústí nad Labem 197Google Scholar
  51. 51.
    Cross MM (1970) Polymer 11:238CrossRefGoogle Scholar
  52. 52.
    Rogers KR, Becker JY, Cembrano J, Chough SH (2001) Talanta 54:1059PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Almeida CMVB, Gianetti BF (2002) Electrochem Commun 4:985CrossRefGoogle Scholar
  54. 54.
    Sýs M, Khaled E, Metelka R, Vytřas K (2017) J Serb Chem Soc 82:865CrossRefGoogle Scholar
  55. 55.
    Kalcher K, Kaufmann JM, Wang J, Švancara I, Vytřas K, Neuhold C, Yang Z (1995) Electroanal 7:5CrossRefGoogle Scholar
  56. 56.
    Dejmkova H, Zima J, Barek J, Mika J (2012) Electroanal 24:1766Google Scholar
  57. 57.
    Pourhossein M, Shahtaheri SJ, Mazloumi A, Rahimi-Foroushani A, Helmi-Kohneshahri M, Maleck Khani H (2018) J Anal Chem 73:966CrossRefGoogle Scholar
  58. 58.
    Pogliani L (1992) J Pharm Sci 81:334PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kachoosangi RT, Wildgoose GG, Compton RG (2008) Analyst 7:888CrossRefGoogle Scholar
  60. 60.
    Jain R, Yadav RK (2012) J Pharm Biomed Anal 2:123CrossRefGoogle Scholar
  61. 61.
    Sýs M, Granit Jashari G, Švecová B, Arbneshi T, Metelka R (2018) J Electroanal Chem 821:10CrossRefGoogle Scholar
  62. 62.
    Grundl G, Müller M, Touraud D, Kunz W (2017) J Mol Liq 236:368CrossRefGoogle Scholar
  63. 63.
    Briggs SW, Comings EW (1943) Ind Eng Chem 35:411CrossRefGoogle Scholar
  64. 64.
    Robinson T (1974) Science 184:430PubMedCrossRefGoogle Scholar
  65. 65.
    Mantle PG, Laws I (1989) J Gen Microbiol 135:2679Google Scholar
  66. 66.
    Melchior C, Collins MA, Cohen G (1982) Crit Rev Toxicol 9:313PubMedCrossRefGoogle Scholar
  67. 67.
    Pelletier SW (1991) Alkaloids: chemical and biological perspectives. Springer, New YorkCrossRefGoogle Scholar
  68. 68.
    Herrera CM (1982) Am Nat 120:218CrossRefGoogle Scholar
  69. 69.
    Brown AJ, Lenehan CE, Francis PS, Dunstan DE, Barnett NW (2007) Talanta 71:1951PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Wu G (2009) Amino Acids 37:1PubMedCrossRefGoogle Scholar
  71. 71.
    Camm EL, Towers G (1973) Phytochemistry 12:961CrossRefGoogle Scholar
  72. 72.
    Louie GV, Bowman ME, Moffitt MC, Baiga TJ, Moore BS, Noel JP (2006) Chem Biol 13:1327PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Rodríguez H, Landete JM, Curiel JA, de Las Rivas B, Mancheño JM, Muñoz R (2008) J Agric Food Chem 56:3068PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Schwarz EL, Roberts WL, Pasquali M (2005) Clin Chim Acta 354:83PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Zunić GD, Spasić S, Jelić-Ivanović Z (2012) Methods Mol Biol 828:243PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Ichiyama A, Nakamura S, Kawai H, Honjo T, Nishizuka Y, Hayaishi O, Sesoh S (1964) J Biol Chem 240:740Google Scholar
  77. 77.
    Grimble RF (1997) Int J Vitam Nutr Res 67:312PubMedPubMedCentralGoogle Scholar
  78. 78.
    Van Soest PJ (1994) Nutritional ecology of the ruminant. Cornell University Press, IthacaGoogle Scholar
  79. 79.
    Britton G (1995) FASEB J 9:1551PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Silverman AK, Ellis CN, Voorhees JJ (1987) J Am Acad Dermatol 16:1027PubMedCrossRefGoogle Scholar
  81. 81.
    Gomis DB, Fernández MP, Gutiérrez Alvarez MD (2000) J Chromatogr A 891:109PubMedCrossRefGoogle Scholar
  82. 82.
    Moreno P, Salvadó V (2000) J Chromatogr A 870:207PubMedCrossRefGoogle Scholar
  83. 83.
    Salo-Väänänena P, Ollilainen V, Mattila P, Lehikoinen K, Salmela-Mölsäa E, Piironen V (2000) Food Chem 71:535CrossRefGoogle Scholar
  84. 84.
    Qian H, Sheng M (1998) J Chromatogr A 825:127PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Blanco M, Coello J, Iturriaga H, Maspoch S, Gómez-Cotín T, Alaoui-Ismaili S, Rovira E (1995) Fresenius J Anal Chem 351:315CrossRefGoogle Scholar
  86. 86.
    Prieto P, Pineda M, Aguilar M (1999) Anal Biochem 269:337PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Webster RD (2012) Chem Rec 12:188PubMedCrossRefGoogle Scholar
  88. 88.
    Sýs M, Žabčíková S, Červenka L, Vytřas K (2016) Potr S J F Sci 10:260Google Scholar
  89. 89.
    Branen AL, Davidson PM, Salminen S, Thorngate J (2001) Food additives. Marcel Dekker, New YorkGoogle Scholar
  90. 90.
    Farag AS, Sýs M, Hájek T, Vytřas K (2018) Monatsh Chem 149:1945CrossRefGoogle Scholar
  91. 91.
    Truitt EB, Duritz G, Ebersberger EM (1963) Exp Biol Med 112:647CrossRefGoogle Scholar
  92. 92.
    Hallström H, Thuvander A (1997) Nat Toxins 5:186PubMedCrossRefGoogle Scholar
  93. 93.
    Botsoglou NA, Grigoropoulou SH, Botsoglou E, Govaris A, Papageorgiou G (2003) Meat Sci 65:1193PubMedCrossRefGoogle Scholar
  94. 94.
    Chow FI, Omaye ST (1983) Methods 18:837Google Scholar
  95. 95.
    Combs GF Jr, Scott ML (1974) J Nutr 104:1297PubMedCrossRefGoogle Scholar
  96. 96.
    Norman AW, Litwack G (1997) Hormones. Elsevier Inc, USAGoogle Scholar
  97. 97.
    Scaramuzzi RJ, Campbell BK, Downing JA, Kendall NR, Khalid M, Muñoz-Gutiérrez M, Somchit A (2006) Reprod Nutr Dev 46:339PubMedCrossRefGoogle Scholar
  98. 98.
    Hsu S, Raine L, Fanger H (1981) Am J Clin Pathol 75:734CrossRefGoogle Scholar
  99. 99.
    Odell WD, Rayford PL, Ross GT (1967) J Lab Clin Med 70:973PubMedGoogle Scholar
  100. 100.
    Scheer FAJL, Czeisler CA (2005) Sleep Med Rev 9:5PubMedCrossRefGoogle Scholar
  101. 101.
    Norman AW, Mizwicki MT, Norman DPG (2004) Nat Rev Drug Discov 3:27PubMedCrossRefGoogle Scholar
  102. 102.
    Brent GA (2012) J Clin Invest 122:3035PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Corbett JR (1974) The biochemical mode of action of pesticides. Academic Press Inc, LondonGoogle Scholar
  104. 104.
    Kumar A (2004) Advances in life sciences. A.P.H Publishing corporation, NewDelhiGoogle Scholar
  105. 105.
    Maroni M, Fanetti AC, Metruccio F (2006) Toxicol Lett 107:145CrossRefGoogle Scholar
  106. 106.
    Balali-Mood M, Saber H (2012) Iran J Med Sci 37:74PubMedPubMedCentralGoogle Scholar
  107. 107.
    Daughton CG, Ternes TA (1999) Environ Health Perspect 107:907PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Liu Z, Guo F, Gu J, Wang Y, Li Y, Wang D, Liang LuL, Li D, He F (2015) Bioinformatics 31:1788PubMedCrossRefGoogle Scholar
  109. 109.
    Lachman L, Roemer WC (1972) J Am Pharm Assoc 12:215PubMedGoogle Scholar
  110. 110.
    Ozkan SA (2011) Electroanalytical methods in pharmaceutical analysis and their validation. H.N.B. Publishing, New YorkGoogle Scholar
  111. 111.
    Ozkan SA, Kauffmann JM, Zuman P (2015) Electroanalysis in biomedical and pharmaceutical sciences: voltammetry, amperometry, biosensors, applications. Springer, BerlinCrossRefGoogle Scholar
  112. 112.
    Djokić S (2016) Biomedical and pharmaceutical applications of electrochemistry. Springer, BerlinCrossRefGoogle Scholar
  113. 113.
    Basile J (2004) J Clin Hypertens 6:621CrossRefGoogle Scholar
  114. 114.
    Ryan ND, Puig-Antich J, Cooper T, Rabinovich H, Ambrosini P, Davies M, King J, Torres D, Fried J (1986) Acta Psychiatr Scand 73:275PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Voilley N, de Weille J, Mamet J, Lazdunski M (2001) J Neurosci 21:8026PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    McCormack K, Urquhart E (1995) Clin Drug Invest 9:88CrossRefGoogle Scholar
  117. 117.
    Villar JCC, García AC, Blanco PT (1993) Talanta 40:325PubMedCrossRefGoogle Scholar
  118. 118.
    Habib IHI, Farag AB, Hassan Rabeay YAH, Hassan HNA (2007) Anal Chem Indian J 7:110Google Scholar
  119. 119.
    Radi A (2003) Farmaco 58:535PubMedCrossRefGoogle Scholar
  120. 120.
    Khodari M, Kauffmann JM, Patriarche GJ, Ghandour MA (1989) J Pharm Biomed Anal 7:1491PubMedCrossRefGoogle Scholar
  121. 121.
    Khodari M, Kauffmann JM, Patriarche GJ, Ghandour MA (1989) Electroanalysis 1:501CrossRefGoogle Scholar
  122. 122.
    Khodari M (1993) Electroanalysis 5:521CrossRefGoogle Scholar
  123. 123.
    Švancara I, Kalcher K (2015) Electrochemistry of Carbon Electrodes. In: Alkire RC, Bartlett PN, Lipkowski J (eds) Advances in electrochemical science and engineering 16. Wiley, Weinheim, p 386Google Scholar
  124. 124.
    Tasioula-Margari M, Okogeri O (2001) Food Chem 74:377CrossRefGoogle Scholar
  125. 125.
    Wu H, Cheng H, Tian J, Wang X (1997) Chin J Chromatogr 15:43Google Scholar
  126. 126.
    Canevari TC, Cincotto FH, Landers R, Machado SAS (2014) Electrochim Acta 147:688CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Milan Sýs
    • 1
    Email author
  • Amir Shaaban Farag
    • 1
  • Ivan Švancara
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations