Advertisement

Selective voltammetric determination of α-lipoic acid on the electrode modified with SnO2 nanoparticles and cetyltriphenylphosphonium bromide

  • Guzel ZiyatdinovaEmail author
  • Tatyana Antonova
  • Vyacheslav Vorobev
  • Yuri Osin
  • Herman Budnikov
Original Paper
  • 15 Downloads

Abstract

Sensitive voltammetric method for α-lipoic acid determination based on glassy carbon electrode (GCE) modified with SnO2 nanoparticles (SnO2 NP) dispersion in cetyltriphenylphosphonium bromide (CTPPB) (SnO2 NP-CTPPB/GCE) has been developed. The comparison to other surface active compounds as dispersive agents has been performed. The electrodes surface has been characterized by scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry. Statistically significant decrease of charge transfer resistance (10.8 ± 0.4 kΩ vs. 181 ± 7 kΩ for GCE and 71 ± 3 kΩ for SnO2 NP-H2O/GCE) and higher effective surface area (13.7 ± 0.2 mm2 vs. 8.2 ± 0.3 mm2 for GCE and 12.1 ± 0.2 mm2 for SnO2 NP-H2O/GCE) has been obtained for SnO2 NP-CTPPB/GCE. α-Lipoic acid oxidation on SnO2 NP-CTPPB/GCE is a two-electron diffusion-controlled pH independent process leading to β-lipoic acid formation. Under conditions of differential pulse voltammetry in Britton–Robinson buffer pH 4.5, the linear dynamic ranges are 0.50–50 and 50–400 μmol dm−3 of α-lipoic acid with the limits of detection and quantification of 0.13 and 0.43 μmol dm−3, respectively. The method developed has been successfully applied for the pharmaceutical dosage form analysis.

Graphical abstract

Keywords

Voltammetry Chemically modified electrodes Metal oxide nanoparticles Surface active compounds α-Lipoic acid 

Notes

Acknowledgements

The authors thank Prof. Irina Galkina (Kazan Federal University) for the synthesis and granting of CTPPB.

Supplementary material

706_2018_2341_MOESM1_ESM.docx (621 kb)
Supplementary material 1 (DOCX 621 kb)

References

  1. 1.
    Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM (2009) Biochim Biophys Acta 1790:1149CrossRefPubMedGoogle Scholar
  2. 2.
    Packer L, Witt EH, Tritschler HJ (1995) Free Radic Biol Med 19:227CrossRefPubMedGoogle Scholar
  3. 3.
    Guo Y, Jones D, Palmer JL, Forman A, Dakhil SR, Velasco MR, Weiss M, Gilman P, Mills GM, Noga SJ, Eng C, Overman MJ, Fisch MJ (2014) Support Care Cancer 22:1223CrossRefGoogle Scholar
  4. 4.
    Sadek KM, Saleh EA, Nasr SM (2018) Hum Exp Toxicol 37:142CrossRefPubMedGoogle Scholar
  5. 5.
    Stanković MN, Mladenović D, Ninković M, Ðuričić I, Šobajić S, Jorgačević B, de Luka S, Vukicevic RJ, Radosavljević TS (2014) J Med Food 17:254CrossRefPubMedGoogle Scholar
  6. 6.
    Jariwalla RJ, Lalezari J, Cenko D, Mansour SE, Kumar A, Gangapurkar B, Nakamura D (2008) J Altern Complement Med 14:139CrossRefGoogle Scholar
  7. 7.
    Dong Y, Wang H, Chen Z (2015) Int J Endocrin 2015:903186CrossRefGoogle Scholar
  8. 8.
    Gianturco V, Bellomo A, D’Ottavio E, Formosa V, Iori A, Mancinella M, Troisi G, Marigliano V (2009) Arch Gerontol Geriatr 49(S1):129CrossRefGoogle Scholar
  9. 9.
    Henriksen EJ, Diamond-Stanic MK, Marchionne EM (2011) Free Radical Biol Med 51:993CrossRefGoogle Scholar
  10. 10.
    Maczurek A, Hager K, Kenklies M, Sharman M, Martins R, Engel J, Carlson DA, Münch G (2008) G Adv Drug Delivery Rev 60:1463CrossRefGoogle Scholar
  11. 11.
    Emir DF, Ozturan IU, Yilmaz S (2018) Am J Emerg Med 36:1125.e3CrossRefGoogle Scholar
  12. 12.
    Aboul-Enein HY, Hoenen H (2004) J Liq Chromatogr Relat Technol 27:3029CrossRefGoogle Scholar
  13. 13.
    Ezhilarasi K, Sudha V, Ramachandran G, Umapathy D, Rajaram R, Padmalayam I, Viswanathan V, Kumar AKH (2014) J Chromatogr Separat Techniq 5:6Google Scholar
  14. 14.
    Chwatko G, Krawczyk M, Iciek M, Kamińska A, Bilska-Wilkosz A, Marcykiewicz B, Głowacki R (2016) Arab J Chem.  https://doi.org/10.1016/j.arabjc.2016.10.006 CrossRefGoogle Scholar
  15. 15.
    Siangproh W, Rattanarat P, Chailapakul O (2010) J Chromatogr A 1217:7699CrossRefPubMedGoogle Scholar
  16. 16.
    Durrani AI, Schwartz H, Schmid W, Sontag G (2007) J Pharm Biomed Anal 45:694CrossRefPubMedGoogle Scholar
  17. 17.
    Durrani AI, Schwartz H, Nagl M, Sontag G (2010) Food Chem 120:1143CrossRefGoogle Scholar
  18. 18.
    Wolyniec E, Karpinska J, Losiewska S, Turkowicz M, Klimczuk J, Kojlo A (2012) Talanta 96:223CrossRefPubMedGoogle Scholar
  19. 19.
    Sitton A, Schmid MG, Gubitz G, Aboul-Enein HY (2004) J Biochem Biophys Methods 61:119CrossRefPubMedGoogle Scholar
  20. 20.
    Kodama S, Taga A, Aizawa S, Kemmei T, Honda Y, Suzuki K, Yamamoto A (2012) Electrophoresis 33:2441CrossRefGoogle Scholar
  21. 21.
    Marin M, Lete C, Manolescu BN, Lupu S (2014) J Electroanal Chem 729:128CrossRefGoogle Scholar
  22. 22.
    Ziyatdinova GK, Budnikov GK, Pogorel’tsev VI (2004) J Anal Chem 59:288CrossRefGoogle Scholar
  23. 23.
    Corduneanu O, Garnett M, Brett AMO (2007) Anal Lett 40:1763CrossRefGoogle Scholar
  24. 24.
    Alarfaj NA (2009) Int J Biomed Sci 5:54PubMedCentralPubMedGoogle Scholar
  25. 25.
    Stanković DM, Mehmeti E, Kalcher K (2016) Anal Sci 32:847CrossRefGoogle Scholar
  26. 26.
    Ziyatdinova GK, Grigor’eva LV, Budnikov GK (2009) J Anal Chem 64:185CrossRefGoogle Scholar
  27. 27.
    Miranda MP, del Rio R, del Valle MA, Faundez M, Armijo F (2012) J Electroanal Chem 668:1CrossRefGoogle Scholar
  28. 28.
    Ferreira APM, dos Santos Pereira LN, da Silva IS, Tanaka SMCN, Tanaka AA, Angnes L (2014) Electroanalysis 26:2138CrossRefGoogle Scholar
  29. 29.
    Dos Santos Pereira LN, da Silva IS, Araújo TP, Tanaka AA, Angnes L (2016) Talanta 154:249CrossRefGoogle Scholar
  30. 30.
    Sasikumar R, Ranganathan P, Chen S-M, Rwei S-P (2018) Sens Actuators B 255:217CrossRefGoogle Scholar
  31. 31.
    Ziyatdinova GK, Ziganshina ER, Budnikov HC (2012) J Anal Chem 67:869CrossRefGoogle Scholar
  32. 32.
    Ziyatdinova G, Budnikov H (2018) Carbon nanomaterials and surfactants as electrode surface modifiers in organic electroanalysis. In: Shtykov SN (ed) Nanoanalytics: nanoobjects and nanotechnologies in analytical chemistry. De Gruyter, Berlin, p 223CrossRefGoogle Scholar
  33. 33.
    Ziyatdinova G, Ziganshina E, Nguyen Cong PH, Budnikov H (2017) Food Anal Meth 10:129CrossRefGoogle Scholar
  34. 34.
    Ziyatdinova G, Ziganshina E, Romashkina S, Budnikov H (2017) Electroanalysis 29:1197CrossRefGoogle Scholar
  35. 35.
    Ziyatdinova GK, Antonova TS, Mubarakova LR, Budnikov HC (2018) J Anal Chem 73:801CrossRefGoogle Scholar
  36. 36.
    Krishnan CV, Garnett M (2011) Int J Electrochem Sci 6:3607Google Scholar
  37. 37.
    Scholz F (ed) (2002) Electroanalytical methods. Guide to experiments and applications. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  38. 38.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  39. 39.
    European Pharmacopoeia (2016) Council of Europe, 9th edn. European Directorate for the Quality of Medicines and Healthcare, StrasbourgGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Analytical Chemistry DepartmentA.M. Butlerov Institute of Chemistry, Kazan Federal UniversityKazanRussian Federation
  2. 2.Interdisciplinary Center for Analytical Microscopy, Kazan Federal UniversityKazanRussian Federation

Personalised recommendations