Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 5, pp 777–788 | Cite as

Dendrimeric α,β-dipeptidic conjugates as organocatalysts in the asymmetric Michael addition reaction of isobutyraldehyde to N-phenylmaleimides

  • José M. Landeros
  • Lydia Suchy
  • Claudia G. Ávila-Ortiz
  • Nuno Maulide
  • Eusebio JuaristiEmail author
Original Paper
  • 242 Downloads

Abstract

A series of polyester dendrimers (1G to 3G generation) based on 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoic acid (bis-MPA) and the core of 1,3-propanediol-2-(hydroxymethyl)-2-methyl (TME) were synthesized and conjugated to the α,β-dipeptide (N-Cbz-Phe-N-Bn-β-Ala-COOH) in convergent fashion. Conventional esterification (DCC, DMAP, DPTS) was used for the above coupling, followed by removal of protecting groups (acetonide and Cbz groups) to provide seven novel organocatalysts exhibiting different sizes and solubilities. The dendritic nature (mono- or di-substituted), ending groups (acetonide or hydroxyl groups) and generation effects of these organocatalysts were evaluated in the Michael addition reaction of isobutyraldehyde to N-phenylmaleimide as benchmark reaction, both in solution and under neat reaction conditions. Reaction yields when using 10 mol% of organocatalyst and NaOH as base varied in the range of good to excellent (neat 96%, aqueous solution 98%, CH2Cl2 solvent 80%), while enantioselectivity as high as 81:19 was achieved. The above enantioselectivity is in line with a positive “dendritic effect”. Regarding the influence of terminal groups, it is appreciated that hydroxyl end-groups afford higher yield relative to analogous acetonide terminal groups. Finally, the scope of the reaction was evaluated with catalysts H2N-Phe-N-Bn-β-Ala-TME-d-2G-A and H2N-Phe-N-Bn-β-Ala-TME-d-2G-OH, which could be recovered and recycled for at least three times without significant loss of catalytic activity.

Graphical abstract

Keywords

Asymmetric catalysis Dendrons α,β-Dipeptides Michael addition Maleimides 

Notes

Acknowledgements

We thank Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) for financial support via Grants nos. 220945, 130826 and 60366, and postdoctoral fellowship granted to J.M.L. We also thank M.T. Cortez-Picasso, V.M. González-Díaz, and M.L. Rodríguez-Pérez for NMR spectra, and G. Cuéllar-Rivera for MS-TOF analysis.

Supplementary material

706_2018_2338_MOESM1_ESM.doc (3.2 mb)
Supplementary material 1 (DOC 3308 kb)

References

  1. 1.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice, vol 1. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Clark JH (2001) Pure Appl Chem 73:103CrossRefGoogle Scholar
  3. 3.
    Shaikh IR (2014) J Catal 402860:1Google Scholar
  4. 4.
    Petri PM, Majander A, Erkkila A (2010) Asymmetric organocatalysis. In: List B (ed) Topics in current chemistry, vol 291. Springer, Berlin, p 29Google Scholar
  5. 5.
    Maruoka K (2008) Asymmetric phase transfer catalysis. Wiley-VCH Verlag, New YorkCrossRefGoogle Scholar
  6. 6.
    Mak XY, Laurino P, Seeberger PH (2009) Beilstein J Org Chem 5:1CrossRefGoogle Scholar
  7. 7.
    Dalko PI, Moisan L (2004) Angew Chem Int Ed 43:5138CrossRefGoogle Scholar
  8. 8.
    List B, Lerner RA, Barbas CF III (2000) J Am Chem Soc 122:2395CrossRefGoogle Scholar
  9. 9.
    Sakthivel K, Notz W, Bui T, Barbas CF III (2001) J Am Chem Soc 123:5260CrossRefPubMedGoogle Scholar
  10. 10.
    Tsogoeva SB (2007) Eur J Org Chem 2007:1701CrossRefGoogle Scholar
  11. 11.
    Chauhan P, Kaur J, Chimni SS (2013) Chem Asian J 8:328CrossRefPubMedGoogle Scholar
  12. 12.
    Grünenfelder CE, Kisunzu JK, Wennemers H (2016) Angew Chem Int Ed 55:8571CrossRefGoogle Scholar
  13. 13.
    Kokotos CG (2013) Org Lett 15:2406CrossRefPubMedGoogle Scholar
  14. 14.
    Yu F, Jin Z, Huang H, Ye T, Liang X, Ye J (2010) Org Biomol Chem 8:4767CrossRefPubMedGoogle Scholar
  15. 15.
    Bartoli G, Bosco M, Carlone A, Cavalli A, Locatelli M, Mazzanti A, Ricci P, Sambri L, Melchiorre P (2006) Angew Chem 118:5088CrossRefGoogle Scholar
  16. 16.
    Flores-Ferrándiz J, Fiser B, Gómez-Bengoa E, Chinchilla R (2015) Eur J Org Chem 2015:1218CrossRefGoogle Scholar
  17. 17.
    Yang W, Jiang KZ, Lu X, Yang H-M, Li L, Lu Y, Xu LW (2013) Chem Asian J 8:1182CrossRefPubMedGoogle Scholar
  18. 18.
    Muramulla S, Ma JA, Zhao JCG (2013) Adv Synth Catal 355:1260CrossRefGoogle Scholar
  19. 19.
    Miura T, Nishida S, Masuda A, Tada N, Itoh A (2011) Tetrahedron Lett 52:4158CrossRefGoogle Scholar
  20. 20.
    Durmaz M, Sirit A (2013) Tetrahedron Asymmetry 24:1443CrossRefGoogle Scholar
  21. 21.
    Xue F, Liu L, Zhang S, Duan W, Wang W (2010) Chem Eur J 16:7979CrossRefPubMedGoogle Scholar
  22. 22.
    Orlandi S, Pozzi G, Ghisetti M, Benaglia M (2013) New J Chem 37:4140CrossRefGoogle Scholar
  23. 23.
    Ma ZW, Liu YX, Li PL, Ren H, Zhu Y, Tao JC (2011) Tetrahedron Asymmetry 22:1740CrossRefGoogle Scholar
  24. 24.
    Gomez-Torres E, Alonso DA, Gómez-Bengoa E, Nájera C (2013) Eur J Org Chem 2013:1434CrossRefGoogle Scholar
  25. 25.
    Miura T, Masuda A, Ina M, Nakashima K, Nishida S, Tada N, Itoh A (2011) Tetrahedron Asymmetry 22:1605CrossRefGoogle Scholar
  26. 26.
    Avila A, Chinchilla R, Gómez-Bengoa E, Nájera C (2013) Eur J Org Chem 23:5085CrossRefGoogle Scholar
  27. 27.
    Bai J-F, Peng L, Wang L-L, Wang L-X, Xu X-Y (2010) Tetrahedron 66:8928CrossRefGoogle Scholar
  28. 28.
    Avila-Ortiz CG, López-Ortiz M, Vega-Peñaloza A, Regla I, Juaristi E (2015) Asymmetric Catal 2:37Google Scholar
  29. 29.
    Izquierdo J, Pericàs MA (2016) ACS Catal 6:348CrossRefGoogle Scholar
  30. 30.
    Rodríguez-Escrich C, Pericás MA (2015) Eur J Org Chem 2015:1173CrossRefGoogle Scholar
  31. 31.
    Zhi C, Wang J, Luo B, Li X, Cao X, Pan Y, Gu H (2014) RSC Adv 4:15036CrossRefGoogle Scholar
  32. 32.
    Szöllösi G, Csámpai A, Somlai C, Fekete M, Bartók M (2014) J Mol Catal A Chem 382:86CrossRefGoogle Scholar
  33. 33.
    Romney DK, Colvin SM, Miller SJ (2014) J Am Chem Soc 136:14019CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pedrosa R, Andrés JM, Gamarra A, Manzano R, Pérez-López C (2013) Tetrahedron 69:10811CrossRefGoogle Scholar
  35. 35.
    Arakawa Y, Wennemers H (2013) Chemsuschem 6:242CrossRefPubMedGoogle Scholar
  36. 36.
    Gruttadauria M, Giacalone F, Noto R (2008) Chem Soc Rev 37:1666CrossRefPubMedGoogle Scholar
  37. 37.
    Machuca E, Granados G, Hinojosa B, Juaristi E (2015) Tetrahedron Lett 56:6047CrossRefGoogle Scholar
  38. 38.
    Benaglia M, Puglisi A, Cozzi F (2003) Chem Rev 103:3401CrossRefPubMedGoogle Scholar
  39. 39.
    Altava B, Burguete MI, Garcia-Verdugo E, Luis SV (2018) Chem Soc Rev 47:2722CrossRefGoogle Scholar
  40. 40.
    Anastas P, Eghbali N (2010) Chem Soc Rev 39:301CrossRefGoogle Scholar
  41. 41.
    Hernández JG, Juaristi E (2012) Chem Commun 48:5396CrossRefGoogle Scholar
  42. 42.
    van Heerbeek R, Kamer PCJ, van Leeuwen PWNM, Reek JNH (2002) Chem Rev 102:3717CrossRefPubMedGoogle Scholar
  43. 43.
    Keller M, Perrier A, Linhardt R, Travers L, Wittmann S, Caminade A-M, Majoral J-P, Reiser O, Ouali A (2013) Adv Synth Catal 355:1748CrossRefGoogle Scholar
  44. 44.
    Mangala K, Sreekumar KJ (2015) Appl Polym Sci 132:41593CrossRefGoogle Scholar
  45. 45.
    Rasmussen B, Christensen JB (2012) Org Biomol Chem 10:4821CrossRefPubMedGoogle Scholar
  46. 46.
    Caminade A-M, Ouali A, Keller M, Majoral JP (2012) Chem Soc Rev 41:4113CrossRefPubMedGoogle Scholar
  47. 47.
    Mangala K, Sinija PS, Sreekumar K (2015) J Mol Catal A Chem 407:87CrossRefGoogle Scholar
  48. 48.
    Salvo A, Giacalone F, Gruttadauria M (2016) Molecules 21:1288CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Zhang H, Zhang Q, Hong C, Zou G (2017) Polym Chem 8:1771CrossRefGoogle Scholar
  50. 50.
    Caminade A-M, Ouali A, Laurent R, Turrin C-O, Majoral J-P (2015) Chem Soc Rev 44:3890CrossRefPubMedGoogle Scholar
  51. 51.
    Smitha G, Sreekumar K (2016) RSC Adv 6:85643CrossRefGoogle Scholar
  52. 52.
    Krishnan R, Panicker G, Krishnapillai S (2014) Tetrahedron Lett 55:2352CrossRefGoogle Scholar
  53. 53.
    Pourjavadi A, Hosseini SH (2014) Phosphorus. Sulfur Silicon Relat Elem 189:1794CrossRefGoogle Scholar
  54. 54.
    Obregón-Zúñiga A, Guerrero-Robles M, Juaristi E (2017) Eur J Org Chem 2692Google Scholar
  55. 55.
    Obregón-Zúñiga A, Juaristi E (2017) Tetrahedron 73:5373CrossRefGoogle Scholar
  56. 56.
    Hernández JG, Juaristi E (2011) J Org Chem 76:1464CrossRefPubMedGoogle Scholar
  57. 57.
    Hernández JG, Juaristi E (2011) Tetrahedron 67:6953CrossRefGoogle Scholar
  58. 58.
    Hernández JG, García-López G, Juaristi E (2012) Tetrahedron 68:92CrossRefGoogle Scholar
  59. 59.
    Jiménez-González E, Ávila-Ortiz CG, González-Olvera R, Vargas-Caporali J, Dewynter G, Juaristi E (2012) Tetrahedron 68:9842CrossRefGoogle Scholar
  60. 60.
    Avila-Ortiz CG, Díaz-Corona L, Jiménez-González E, Juaristi E (2017) Molecules 22:1328CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Würsch A, Möller M, Glauser T, Lim LS, Voytek SB, Hedrick JL, Frank CW, Hilborn JG (2001) Macromolecules 34:6601CrossRefGoogle Scholar
  62. 62.
    Ihre H, Hult A, Fréchet JMJ, Gitsov I (1998) Macromolecules 31:4061CrossRefGoogle Scholar
  63. 63.
    Ihre H, Padilla De Jesús OL, Fréchet JMJ (2001) J Am Chem Soc 123:5908CrossRefPubMedGoogle Scholar
  64. 64.
    Malkoch M, Hallman K, Lutsenko S, Hult A, Malmström E, Moberg C (2002) J Org Chem 67:8197CrossRefPubMedGoogle Scholar
  65. 65.
    Twibanire J-D’AK, Grindley TB (2012) Polymers 4:794CrossRefGoogle Scholar
  66. 66.
    Avila A, Chinchilla R, Gómez-Bengoa E, Nájera C (2013) Tetrahedron Asymmetry 24:1531CrossRefGoogle Scholar
  67. 67.
    Avila A, Chinchilla R, Nájera C (2012) Tetrahedron Asymmetry 23:1625CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de QuímicaCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMéxico
  2. 2.Institut für Organische ChemieUniversität WienViennaAustria
  3. 3.El Colegio NacionalCiudad de MéxicoMéxico

Personalised recommendations