Advertisement

Voltammetric behavior of a candidate anticancer drug roscovitine at carbon electrodes in aqueous buffers and a cell culture medium

  • Petr Orság
  • Luděk Havran
  • Lukáš Fojt
  • Jan Coufal
  • Václav Brázda
  • Miroslav FojtaEmail author
Original Paper
  • 36 Downloads

Abstract

Roscovitine is a candidate anticancer drug acting as an inhibitor of cyclin-dependent kinases which are involved in cell-cycle control and in apoptosis triggering. In our present study,we show for the first time that roscovitine yields a well-developed, analytically useful signal due to its irreversible electrochemical oxidation in alkaline range of pH (while in acidic media, its oxidation process is apparently rather complex and corresponding voltammetric signals are less suitable for analytical purposes). We demonstrate the possibility of voltammetric determination of the drug in buffer solutions (down to submicromolar concentrations of roscovitine) as well as in cell culture medium (down to micromolar concentrations) using in-house-fabricated pyrolytic graphite or screen-printed carbon electrodes.

Graphical abstract

Keywords

Roscovitine Anticancer drug Carbon electrodes Voltammetry Cell culture medium 

Notes

Acknowledgements

This research was supported by the Czech Science Foundation (project P206/12/G151). Support from the Academy of Sciences of the Czech Republic (RVO: 61388963) and Ministry of Education, Youth and Sports of the Czech Republic under project CEITEC 2020 (LQ1601) is acknowledged. The authors thank Metrohm CZ for efficient technical, material and intellectual support.

References

  1. 1.
    Obaya AJ, Sedivy JM (2002) Cell Mol Life Sci 59:126CrossRefGoogle Scholar
  2. 2.
    Malumbres M, Barbacid M (2009) Nat Rev Cancer 9:153CrossRefGoogle Scholar
  3. 3.
    Cicenas J, Kalyan K, Sorokinas A, Jatulyte A, Valiunas D, Kaupinis A, Valius M (2014) Cancers 6:2224CrossRefGoogle Scholar
  4. 4.
    Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, Inagaki M, Delcros JG, Moulinoux JP (1997) Eur J Biochem 243:527CrossRefGoogle Scholar
  5. 5.
    De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH (1997) Eur J Biochem 243:518CrossRefGoogle Scholar
  6. 6.
    Bach S, Knockaert M, Reinhardt J, Lozach O, Schmitt S, Baratte B, Koken M, Coburn SP, Tang L, Jiang T, Liang D-C, Galons H, Dierick J-F, Pinna LA, Meggio F, Totzke F, Schächtele C, Lerman AS, Carnero A, Wan Y, Gray N, Meijer L (2005) J Biol Chem 280:31208CrossRefGoogle Scholar
  7. 7.
    McClue SJ, Blake D, Clarke R, Cowan A, Cummings L, Fischer PM, MacKenzie M, Melville J, Stewart K, Wang S, Zhelev N, Zheleva D, Lane DP (2002) Int J Cancer 102:463CrossRefGoogle Scholar
  8. 8.
    Raynaud FI (2005) Clin Cancer Res 11:4875CrossRefGoogle Scholar
  9. 9.
    Benson C, White J, De Bono J, O’Donnell A, Raynaud F, Cruickshank C, McGrath H, Walton M, Workman P, Kaye S, Cassidy J, Gianella-Borradori A, Judson I, Twelves C (2007) Br J Cancer 96:29CrossRefGoogle Scholar
  10. 10.
    Raynaud FI, Fischer PM, Nutley BP, Goddard PM, Lane DP, Workman P (2004) Mol Cancer Ther 3:353PubMedGoogle Scholar
  11. 11.
    Vita M, Abdel-Rehim M, Nilsson C, Hassan Z, Skansen P, Wan H, Meurling L, Hassan M (2005) J Chrom B 821:75CrossRefGoogle Scholar
  12. 12.
    de la Motte S, Gianella-Borradori A (2004) Int J Clin Pharmacol Ther 42:232CrossRefGoogle Scholar
  13. 13.
    Karady M, Novak O, Horna A, Strnad M, Dolezal K (2011) Electroanalysis 23:2898CrossRefGoogle Scholar
  14. 14.
    Brotons A, Vidal-Iglesias FJ, Solla-Gullón J, Iniesta J (2016) Anal Methods 8:702CrossRefGoogle Scholar
  15. 15.
    Goh MS, Pumera M (2012) Electroanalysis 24:1147CrossRefGoogle Scholar
  16. 16.
    Sharma VK, Jelen F, Trnkova L (2015) Sensors 15:1564CrossRefGoogle Scholar
  17. 17.
    Raj MA, John SA (2013) Anal Chim Acta 771:14CrossRefGoogle Scholar
  18. 18.
    Lakshmi D, Whitcombe MJ, Davis F, Sharma PS, Prasad BB (2011) Electroanalysis 23:305CrossRefGoogle Scholar
  19. 19.
    Hason S, Stepankova S, Kourilova A, Vetterl V, Lata J, Fojta M, Jelen F (2009) Anal Chem 81:4302CrossRefGoogle Scholar
  20. 20.
    Hason S, Vetterl V, Jelen F, Fojta M (2009) Electrochim Acta 54:1864CrossRefGoogle Scholar
  21. 21.
    Hasoň S, Daňhel A, Schwarzová-Pecková K, Fojta M (2018) Carbon electrodes in electrochemical analysis of biomolecules and bioactive substances: roles of surface structures and chemical groups. In: Nikolelis DP, Nikoleli G-P (eds) nanotechnology and biosensors. Elsevier Inc, Amsterdam, p 51CrossRefGoogle Scholar
  22. 22.
    Aladag N, Trnkova L, Kourilova A, Ozsoz M, Jelen F (2010) Electroanalysis 22:1675CrossRefGoogle Scholar
  23. 23.
    Palecek E, Tkac J, Bartosik M, Bertok T, Ostatna V, Palecek J (2015) Chem Rev 115:2045CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Compton RG, Banks CE (2009) J Solid State Electrochem 13:1629CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Petr Orság
    • 1
  • Luděk Havran
    • 1
  • Lukáš Fojt
    • 1
  • Jan Coufal
    • 1
  • Václav Brázda
    • 1
  • Miroslav Fojta
    • 1
    • 2
    Email author
  1. 1.Institute of BiophysicsCzech Academy of SciencesBrnoCzech Republic
  2. 2.Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations