Aliphatic nitro compounds chemistry: oximes–nitrones tunable production through directed tandem synthesis
- 50 Downloads
Abstract
Reduction of aliphatic nitro compounds in the presence of aldehydes and dialdehydes for tunable directed synthesis of oximes, nitrones, nitrone–oximes, and dinitrones was reported. The slow and nonselective reduction of aliphatic nitro compounds was directed by condensation of in situ prepared alkylhydroxylamines with aromatic aldehydes. Mononitrones and dinitrones were synthesized at reflux and at 55 °C conditions, respectively, in tetrahydrofuran using SnCl2·2H2O and Na2CO3. It was found that the presence of a catalytic amount of carboxylic acid such as 3-phenylpropanoic acid increases the yield of dinitrones versus nitrone–oxime and dioxime when dialdehydes were used as aldehyde source.
Graphical abstract
Keywords
Aliphatic nitro Oxime Nitrone Nitrone–oxime DinitroneNotes
Acknowledgements
This work was supported by Institute for Advanced Studies in Basic Sciences (IASBS).
Supplementary material
References
- 1.Abbas K, Hardy M, Poulhès F, Karoui H, Tordo P, Ouari O, Peyrot F (2014) Free Radic Biol Med 71:281CrossRefGoogle Scholar
- 2.Zhang H, Joseph J, Vasquez-Vivar J, Karoui H, Nsanzumuhire C, Martásek P, Tordo P, Kalyanaraman B (2000) FEBS Lett 473:58CrossRefGoogle Scholar
- 3.Bézière N, Hardy M, Poulhès F, Karoui H, Tordo P, Ouari O, Frapart Y-M, Rockenbauer A, Boucher J-L, Mansuy D (2014) Free Radic Biol Med 67:150CrossRefGoogle Scholar
- 4.Chakraborty KB, Scott G (1984) J Polym Sci Polym Lett Ed 22:553CrossRefGoogle Scholar
- 5.Confalone PN, Huie EM (1988) Org React 36:1Google Scholar
- 6.Feuer H (2008) Nitrile oxides, nitrones, and nitronates in organic synthesis: novel strategies in synthesis, 2nd edn. Wiley, HobokenGoogle Scholar
- 7.Annunziata R, Cinquini M, Cozzi F, Raimondi L (1989) Gazz Chim It 119:253Google Scholar
- 8.Brandi A, Cardona F, Cicchi S, Cordero FM, Goti A (2009) Chem Eur J 15:7808CrossRefGoogle Scholar
- 9.Kumar V, Chatterjee A, Roy BG, Banerjee M (2017) Catal Commun 94:77CrossRefGoogle Scholar
- 10.Floyd RA, Kopke RD, Choi C-H, Foster SB, Doblas S, Towner RA (2008) Free Radic Biol Med 45:1361CrossRefGoogle Scholar
- 11.Floyd RA, Kotake Y, Hensley K, Nakae D, Konishi Y (2002) Mol Cell Biochem 234:195CrossRefGoogle Scholar
- 12.Cadenas S, Barja G (1999) Free Radic Biol Med 26:1531CrossRefGoogle Scholar
- 13.Floyd RA, Towner RA, Wu D, Abbott A, Cranford R, Branch D, Guo W-X, Foster SB, Jones I, Alam R (2010) Free Radic Res 44:108CrossRefGoogle Scholar
- 14.Christensen D, Joergensen KA (1989) J Org Chem 54:126CrossRefGoogle Scholar
- 15.Cicchi S, Goti A, Brandi A (1995) J Org Chem 60:4743CrossRefGoogle Scholar
- 16.Murahashi S, Mitsui H, Shiota T, Tsuda T, Watanabe S (1990) J Org Chem 55:1736CrossRefGoogle Scholar
- 17.Dondoni A, Franco S, Junquera F, Merchan F, Merino P, TeJero T (1994) Synth Commun 24:2537CrossRefGoogle Scholar
- 18.Buehler E (1967) J Org Chem 32:261CrossRefGoogle Scholar
- 19.Southwick PL, Stemniski JR (1982) Synthesis 1982:599CrossRefGoogle Scholar
- 20.Kende AS, Mendoza JS (1991) Tetrahedron Lett 32:1699CrossRefGoogle Scholar
- 21.Gautheron-Chapoulaud V, Pandya SU, Cividino P, Masson G, Py S, Vallée Y (2001) Synlett 2001:1281CrossRefGoogle Scholar
- 22.Cisneros L, Serna P, Corma A (2014) Angew Chem Int Ed 53:9306CrossRefGoogle Scholar
- 23.Ramdar M, Kazemi F, Kaboudin B, Taran Z, Partovi A (2016) New J Chem 40:9257CrossRefGoogle Scholar
- 24.Kazemi F, Ramdar M, Tavana B, Davarpanah J (2017) Monatsh Chem 148:1101CrossRefGoogle Scholar
- 25.Li X, Zhang B, Tang L, Goh TW, Qi S, Volkov A, Pei Y, Qi Z, Tsung C-K, Stanley L (2017) Angew Chem Int Ed 129:16589CrossRefGoogle Scholar
- 26.Lippincott S, Hass H (1939) Ind Eng Chem 31:118CrossRefGoogle Scholar
- 27.Hinton RD, Janzen EG (1992) J Org Chem 57:2646CrossRefGoogle Scholar
- 28.Matias AC, Biazolla G, Cerchiaro G, Keppler AF (2016) Bioorg Med Chem 24:232CrossRefGoogle Scholar
- 29.Matsuo J-I, Shibata T, Kitagawa H, Mukaiyama T (2001) Arkivoc 10:58Google Scholar