Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 2, pp 353–362 | Cite as

Aliphatic nitro compounds chemistry: oximes–nitrones tunable production through directed tandem synthesis

  • Foad KazemiEmail author
  • Moosa Ramdar
  • Jamal Davarpanah
Original Paper
  • 50 Downloads

Abstract

Reduction of aliphatic nitro compounds in the presence of aldehydes and dialdehydes for tunable directed synthesis of oximes, nitrones, nitrone–oximes, and dinitrones was reported. The slow and nonselective reduction of aliphatic nitro compounds was directed by condensation of in situ prepared alkylhydroxylamines with aromatic aldehydes. Mononitrones and dinitrones were synthesized at reflux and at 55 °C conditions, respectively, in tetrahydrofuran using SnCl2·2H2O and Na2CO3. It was found that the presence of a catalytic amount of carboxylic acid such as 3-phenylpropanoic acid increases the yield of dinitrones versus nitrone–oxime and dioxime when dialdehydes were used as aldehyde source.

Graphical abstract

Keywords

Aliphatic nitro Oxime Nitrone Nitrone–oxime Dinitrone 

Notes

Acknowledgements

This work was supported by Institute for Advanced Studies in Basic Sciences (IASBS).

Supplementary material

706_2018_2326_MOESM1_ESM.pdf (8.9 mb)
Supplementary material 1 (PDF 9110 kb)

References

  1. 1.
    Abbas K, Hardy M, Poulhès F, Karoui H, Tordo P, Ouari O, Peyrot F (2014) Free Radic Biol Med 71:281CrossRefGoogle Scholar
  2. 2.
    Zhang H, Joseph J, Vasquez-Vivar J, Karoui H, Nsanzumuhire C, Martásek P, Tordo P, Kalyanaraman B (2000) FEBS Lett 473:58CrossRefGoogle Scholar
  3. 3.
    Bézière N, Hardy M, Poulhès F, Karoui H, Tordo P, Ouari O, Frapart Y-M, Rockenbauer A, Boucher J-L, Mansuy D (2014) Free Radic Biol Med 67:150CrossRefGoogle Scholar
  4. 4.
    Chakraborty KB, Scott G (1984) J Polym Sci Polym Lett Ed 22:553CrossRefGoogle Scholar
  5. 5.
    Confalone PN, Huie EM (1988) Org React 36:1Google Scholar
  6. 6.
    Feuer H (2008) Nitrile oxides, nitrones, and nitronates in organic synthesis: novel strategies in synthesis, 2nd edn. Wiley, HobokenGoogle Scholar
  7. 7.
    Annunziata R, Cinquini M, Cozzi F, Raimondi L (1989) Gazz Chim It 119:253Google Scholar
  8. 8.
    Brandi A, Cardona F, Cicchi S, Cordero FM, Goti A (2009) Chem Eur J 15:7808CrossRefGoogle Scholar
  9. 9.
    Kumar V, Chatterjee A, Roy BG, Banerjee M (2017) Catal Commun 94:77CrossRefGoogle Scholar
  10. 10.
    Floyd RA, Kopke RD, Choi C-H, Foster SB, Doblas S, Towner RA (2008) Free Radic Biol Med 45:1361CrossRefGoogle Scholar
  11. 11.
    Floyd RA, Kotake Y, Hensley K, Nakae D, Konishi Y (2002) Mol Cell Biochem 234:195CrossRefGoogle Scholar
  12. 12.
    Cadenas S, Barja G (1999) Free Radic Biol Med 26:1531CrossRefGoogle Scholar
  13. 13.
    Floyd RA, Towner RA, Wu D, Abbott A, Cranford R, Branch D, Guo W-X, Foster SB, Jones I, Alam R (2010) Free Radic Res 44:108CrossRefGoogle Scholar
  14. 14.
    Christensen D, Joergensen KA (1989) J Org Chem 54:126CrossRefGoogle Scholar
  15. 15.
    Cicchi S, Goti A, Brandi A (1995) J Org Chem 60:4743CrossRefGoogle Scholar
  16. 16.
    Murahashi S, Mitsui H, Shiota T, Tsuda T, Watanabe S (1990) J Org Chem 55:1736CrossRefGoogle Scholar
  17. 17.
    Dondoni A, Franco S, Junquera F, Merchan F, Merino P, TeJero T (1994) Synth Commun 24:2537CrossRefGoogle Scholar
  18. 18.
    Buehler E (1967) J Org Chem 32:261CrossRefGoogle Scholar
  19. 19.
    Southwick PL, Stemniski JR (1982) Synthesis 1982:599CrossRefGoogle Scholar
  20. 20.
    Kende AS, Mendoza JS (1991) Tetrahedron Lett 32:1699CrossRefGoogle Scholar
  21. 21.
    Gautheron-Chapoulaud V, Pandya SU, Cividino P, Masson G, Py S, Vallée Y (2001) Synlett 2001:1281CrossRefGoogle Scholar
  22. 22.
    Cisneros L, Serna P, Corma A (2014) Angew Chem Int Ed 53:9306CrossRefGoogle Scholar
  23. 23.
    Ramdar M, Kazemi F, Kaboudin B, Taran Z, Partovi A (2016) New J Chem 40:9257CrossRefGoogle Scholar
  24. 24.
    Kazemi F, Ramdar M, Tavana B, Davarpanah J (2017) Monatsh Chem 148:1101CrossRefGoogle Scholar
  25. 25.
    Li X, Zhang B, Tang L, Goh TW, Qi S, Volkov A, Pei Y, Qi Z, Tsung C-K, Stanley L (2017) Angew Chem Int Ed 129:16589CrossRefGoogle Scholar
  26. 26.
    Lippincott S, Hass H (1939) Ind Eng Chem 31:118CrossRefGoogle Scholar
  27. 27.
    Hinton RD, Janzen EG (1992) J Org Chem 57:2646CrossRefGoogle Scholar
  28. 28.
    Matias AC, Biazolla G, Cerchiaro G, Keppler AF (2016) Bioorg Med Chem 24:232CrossRefGoogle Scholar
  29. 29.
    Matsuo J-I, Shibata T, Kitagawa H, Mukaiyama T (2001) Arkivoc 10:58Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  2. 2.Center for Climate and Global Warming (CCGW)Institute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  3. 3.Chemistry DepartmentProduction Technology Research Institute-ACECRAhvazIran

Personalised recommendations