Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 3, pp 489–498 | Cite as

Positive effect of surface modification with titanium carbosilicide on performance of lithium-transition metal phosphate cathode materials

  • Irina A. Ivanishcheva
  • Aleksandr V. IvanishchevEmail author
  • Ambesh Dixit
Original Paper
  • 34 Downloads

Abstract

The capacity retention of lithium intercalated cathode materials is strongly dependent on their surface condition, if surface is modified with various solid state compounds. In the present work one representative of carbosilicide type compounds known in literature as MAX-phase group (Mn+1AXn, where M is a transition metal, A is an element of III–VI group, and X is C and/or N) was used as surface modification agent. Synthesis temperature of Ti3SiC2 (TSC) compound, which is close to 1500 °C, was decreased by the application of special treatment of the reagents blend. The mechanism acting of TSC modification is presented and compared with other models, suggested in literature. Based on the results of experiments with different TSC contents and different substrate types we found positive effect of surface modification with TSC of the phosphate-based lithium intercalated cathode materials on their capacity fading rate. Outstanding high electronic conductivity of TSC makes this phase applicable as co-component in the composite electrode materials.

Graphical abstract

Keywords

Titanium carbosilicide MAX phase Surface modification Intercalation compounds Charge transfer Electrochemistry 

Notes

Acknowledgements

The authors are grateful to the Russian Foundation for Basic Research (projects No. 18-53-45004 and No. 16-33-00328) and to the Department of Science and Technology of the Ministry of Science and Technology of the Republic of India (project No. INT/RUS/RFBR/320) for the financial support of the present work. The authors appreciate I.A. Bobrikov for the opportunity to use XRD and SEM methods for analysis of structural and morphological properties of studied materials.

References

  1. 1.
    Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Adv Mater 14:1525CrossRefGoogle Scholar
  2. 2.
    Gaubicher J, Wurm C, Goward G, Masquelier C, Nazar L (2000) Chem Mater 12:3240CrossRefGoogle Scholar
  3. 3.
    Liu C, Masse R, Nan X, Cao G (2016) Energy Storage Mater 4:15CrossRefGoogle Scholar
  4. 4.
    Ivanishchev AV, Ushakov AV, Ivanishcheva IA, Churikov AV, Mironov AV, Fedotov SS, Khasanova NR, Antipov EV (2017) Electrochim Acta 230:479CrossRefGoogle Scholar
  5. 5.
    Sun CW, Rajasekhara S, Dong YZ, Goodenough JB (2011) ACS Appl Mater Interfaces 3:3772CrossRefGoogle Scholar
  6. 6.
    Chen YH, Zhao YM, An XN, Liu JM, Dong YZ, Chen L (2009) Electrochim Acta 54:5844CrossRefGoogle Scholar
  7. 7.
    Yao JH, Wei SS, Zhang PJ, Shen CQ, Aguey-Zinsou KF, Wang LB (2012) J Alloys Compd 532:49CrossRefGoogle Scholar
  8. 8.
    Yuan W, Yan J, Tang ZY, Sha O, Wang JM, Mao WF, Ma L (2012) Electrochim Acta 72:138CrossRefGoogle Scholar
  9. 9.
    Bini M, Ferrari S, Casponi D, Massarotti V (2011) Electrochim Acta 56:2648CrossRefGoogle Scholar
  10. 10.
    Chen MM, Zhao Z, Gao XP, Peng WX, Wei JP (2008) J Phys Chem C 112:5689CrossRefGoogle Scholar
  11. 11.
    Pan AQ, Liu J, Zhang JG, Xu W, Cao GZ, Nie ZM, Arey BW, Liang SQ (2010) Electrochem Commun 12:1674CrossRefGoogle Scholar
  12. 12.
    Teng F, Hu ZH, Ma XH, Zhang LC, Ding CX, Yu Y, Chen CH (2013) Electrochim Acta 91:43CrossRefGoogle Scholar
  13. 13.
    Eftekhari A (2017) J Power Sources 343:395CrossRefGoogle Scholar
  14. 14.
    Konarova M, Taniguchi I (2010) J Power Sources 195:3661CrossRefGoogle Scholar
  15. 15.
    Chong J, Xun S, Song X, Ridgway P, Liu G, Battaglia VS (2012) J Power Sources 200:67CrossRefGoogle Scholar
  16. 16.
    Kam KC, Gustafsson T, Thomas JO (2011) Solid State Ion 192:356CrossRefGoogle Scholar
  17. 17.
    Fujita Y, Iwase H, Shida K, Liao J, Fukui T (2017) J Power Sources 361:115CrossRefGoogle Scholar
  18. 18.
    Jeitschko W, Nowotny H (1967) Monatsh Chem 98:329CrossRefGoogle Scholar
  19. 19.
    Barsoum MW, El-Raghy T (1996) J Am Ceram Soc 79:1953CrossRefGoogle Scholar
  20. 20.
    Barsoum MW, El-Raghy T (2001) Am Sci 89:334CrossRefGoogle Scholar
  21. 21.
    Högberg H, Hultman L, Emmerlich J, Joelsson T, Eklund P, Molina-Aldareguia JM, Palmquist J-P, Wilhelmsson O, Jansson U (2005) Surf Coat Technol 193:6CrossRefGoogle Scholar
  22. 22.
    Sun ZM (2011) Int Mater Rev 56:143CrossRefGoogle Scholar
  23. 23.
    An J, Liu C, Guo R, Li Y, Xu W (2012) J Electrochem Soc 159:A2038CrossRefGoogle Scholar
  24. 24.
    Pampuch R, Lis J, Stobierski L, Tymkiewicz M (1989) J Eur Ceram Soc 5:283CrossRefGoogle Scholar
  25. 25.
    Cai G, Guo R, Liu L, Yang Y, Zhang C, Wu C, Guo W, Jiang H (2015) J Power Sources 288:136CrossRefGoogle Scholar
  26. 26.
    Wu C, Guo R, Cai G, Zhang C, Yang Y, Guo W, Liu Z, Wan Y, Jiang H (2016) J Power Sources 306:779CrossRefGoogle Scholar
  27. 27.
    Sun D, Wu C, Guo R, Liu Z, Xie D, Zheng M, Wang B, Peng J, Jiang H (2017) Ceram Int 43:2791CrossRefGoogle Scholar
  28. 28.
    Medvedeva NI, Enyashin AN, Ivanovskii AI (2011) J Struct Chem 52:785CrossRefGoogle Scholar
  29. 29.
    Xu YG, Ou X-D, Rong X-M (2014) Mater Lett 116:322CrossRefGoogle Scholar
  30. 30.
    Eklund P, Beckers M, Jansson U, Hogberg H, Hultman L (2010) Thin Solid Films 518:1851CrossRefGoogle Scholar
  31. 31.
    Kero I, Tegman R, Antti M-L (2010) Ceram Int 36:375CrossRefGoogle Scholar
  32. 32.
    Grigoryan AE, Rogachev AS, Sychev AE, Levashov EA (1999) Refract Ind Ceram 40:484CrossRefGoogle Scholar
  33. 33.
    Goto T, Hirai T (1987) Mater Res Bull 22:1195CrossRefGoogle Scholar
  34. 34.
    Sun Z, Zhang Y, Zhou Y (1999) Scr Mater 41:61CrossRefGoogle Scholar
  35. 35.
    Sun Z, Zhou Y (1999) Mater Res Innov 2:227CrossRefGoogle Scholar
  36. 36.
    Arunajatesan S, Carim AH (1995) J Am Ceram Soc 78:667CrossRefGoogle Scholar
  37. 37.
    Kellerman DG, Gorshkov VS, YaN Blinovskov (1997) Inorg Mater 33:271Google Scholar
  38. 38.
    Yang SL, Sun ZM, Hashimoto H (2004) J Alloys Compd 368:312CrossRefGoogle Scholar
  39. 39.
    Goldin BA, Istomin PV, Ryabkov YuI (1997) Inorg Mater 33:577Google Scholar
  40. 40.
    Istomin PV, Nadutkin AV, Ryabkov YuI, Goldin BA (2006) Inorg Mater 42:250CrossRefGoogle Scholar
  41. 41.
    Zou Y, Sun ZM, Tada S, Hashimoto H (2008) J Alloys Compd 461:579CrossRefGoogle Scholar
  42. 42.
    Liang B, Han X, Zou Q, Zhao Y, Wang M (2009) Int J Refract Met Hard Mater 27:664CrossRefGoogle Scholar
  43. 43.
    Cui Y, Xu Y, Xu S, Li X, Yang J (2009) Mater Sci Forum 620–622:331CrossRefGoogle Scholar
  44. 44.
    Avvakumov EG (1986) Mechanicheskie metodi activacii chimicheskih processov. Nauka, NovosibirskGoogle Scholar
  45. 45.
    Chen YS, Zhang D, Bian XF, Bie XF, Wang CZ, Du F, Jang M, Chen G, Wei YJ (2012) Electrochim Acta 79:95CrossRefGoogle Scholar
  46. 46.
    Zhang S, Wu Q, Deng C, Liu FL, Zhang M, Meng FL, Gao H (2012) J Power Sources 218:56CrossRefGoogle Scholar
  47. 47.
    Yin SC, Grondey H, Strobel P, Anne M, Nazar LF (2003) J Am Chem Soc 125:10402CrossRefGoogle Scholar
  48. 48.
    Ivanishchev AV, Churikov AV, Ushakov AV (2014) Electrochim Acta 122:187CrossRefGoogle Scholar
  49. 49.
    Zhang LL, Liang G, Peng G, Zou F, Huang YH, Croft MC, Ignatov A (2012) J Phys Chem C 116:12401CrossRefGoogle Scholar
  50. 50.
    Markevich E, Sharabi R, Gottlieb H, Borgel V, Fridman K, Salitra G, Aurbach D, Semrau G, Schmidt MA, Schall N, Bruenig C (2012) Electrochem Commun 15:22CrossRefGoogle Scholar
  51. 51.
    Markovsky B, Rodkin A, Cohen YS, Palchik O, Levi E, Aurbach D, Kim H-J, Schmidt M (2003) J Power Sources 119–121:504CrossRefGoogle Scholar
  52. 52.
    Ahrens LH (1952) Geochim Cosmochim Acta 2:155CrossRefGoogle Scholar
  53. 53.
    Svitan’ko A, Scopets V, Novikova S, Yaroslavtsev A (2015) Solid State Ion 271:42CrossRefGoogle Scholar
  54. 54.
    Iltchev N, Chen Y, Okada S, Yamaki J-I (2003) J Power Sources 119–121:749CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ChemistrySaratov State University named after N.G. ChernyshevskySaratovRussian Federation
  2. 2.Department of Physics and Center for Solar EnergyIndian Institute of Technology JodhpurJodhpurIndia

Personalised recommendations