Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 11, pp 1955–1962 | Cite as

Highly sensitive electrochemical detection of iodate based on glassy carbon electrode modified with iridium oxide

  • Yanna Lazarova
  • Ivan Shterev
  • Totka Dodevska
Original Paper
  • 49 Downloads

Abstract

A glassy carbon electrode electrochemically modified with iridium oxide (IrOx) has been developed for amperometric quantitative detection of iodate. Two-step potential cycling was used to deposit layers of IrOx onto glassy carbon surface. A stable reversible redox couple was observed at the surface of modified electrode in both acidic and neutral solutions. The electrochemical behavior of the modified electrode IrOx/GC and the catalytic activity in electroreduction of iodate at pHs 1.0–4.0 were explored by means of cyclic voltammetry and constant potential amperometry over the potential range from 0.2 to − 0.2 V (vs. Ag/AgCl, 3 M KCl). As optimal operational parameters of IrOx/GC at pH 1.0 have been defined: working potential of − 0.2 V, sensitivity 739.7 µA mM−1 cm−2 (r2 = 0.982), linear dynamic range from 1.0 to 4.6 mM, detection limit of 0.5 µM and response time of 8 s. The modified electrode showed excellent analytical performance — high sensitivity, linearity, reproducibility (the precision for 5 replicate determinations of 0.1 mM iodate was 1.68% RSD), stability (92% of its initial response to iodate after 1 month), and remarkable anti-interference performance, defining it as a promising material for electrochemical sensor application.

Graphical abstract

Keywords

Electrochemistry Sensor Electroreduction of iodate Amperometric determination 

References

  1. 1.
    Medeiros-Neto G, Rubio I (2016) Iodine-deficiency disorders. In: Jameson JL, De Groot LJ (eds) Endocrinology: adult and pediatric, 7th edn. Elsevier, New YorkGoogle Scholar
  2. 2.
    ICCIDD, WHO, UNICEF (2001) Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers, 2nd edn. WHO, Geneva, SwitzerlandGoogle Scholar
  3. 3.
    Gatseva P, Argirova M (2009) Iodine nutrition in Bulgaria: results from the national strategy for elimination of iodine deficiency disorders in Bulgaria—epidemiologic studies on risk population groups. In: Preedy V, Burrow G, Watson R (eds) Comprehensive handbook of iodine—nutritional, biochemical, pathological and therapeutic aspects. Elsevier, New YorkGoogle Scholar
  4. 4.
    Sun X, Shan Z, Teng W (2014) Endocrinol Metab 29:240CrossRefGoogle Scholar
  5. 5.
    Kulkarni PS, Dhar SD, Kulkarni SD (2013) J Anal Sci Technol 4:21CrossRefGoogle Scholar
  6. 6.
    Mary G, Balasubramanian N, Nagaraja K (2008) Chem Pharm Bull 56:888CrossRefGoogle Scholar
  7. 7.
    Choengchan N, Uraisin K, Choden K, Veerasai W, Grudpan K, Nacapricha D (2002) Talanta 58:1195CrossRefGoogle Scholar
  8. 8.
    Zui O, Terletskaya A (1995) Fresenius J Anal Chem 351:212CrossRefGoogle Scholar
  9. 9.
    Wang T, Zhao S, Shen C, Tang J, Wang D (2009) Food Chem 112:215CrossRefGoogle Scholar
  10. 10.
    Das P, Gupta M, Jain A, Verma K (2004) J Chromatogr A 1023:33CrossRefGoogle Scholar
  11. 11.
    Da Rocha J, Ferreira T, Torresi R, Bertotti M (2006) Talanta 69:148CrossRefGoogle Scholar
  12. 12.
    Kosminsky L, Bertotti M (1999) Electroanalysis 11:623CrossRefGoogle Scholar
  13. 13.
    Chatraei F, Zare H (2013) Mater Sci Eng C 33:721CrossRefGoogle Scholar
  14. 14.
    Tian L, Chen L, Liu L, Lu N, Xu H (2005) Anal Bioanal Chem 38:769CrossRefGoogle Scholar
  15. 15.
    Huang X, Li Y, Chen Y, Wang L (2008) Sens Actuators B 134:780CrossRefGoogle Scholar
  16. 16.
    Li Y, Zhou Y, Xian H, Wang L, Huo J (2011) Anal Sci 27:1223CrossRefGoogle Scholar
  17. 17.
    Salimi A, Kavosi B, Babaei A, Hallaj R (2008) Anal Chim Acta 618:43CrossRefGoogle Scholar
  18. 18.
    Marafon E, Kubota L, Gushikem Y (2009) J Solid State Electrochem 13:377CrossRefGoogle Scholar
  19. 19.
    Salimi A, Mamkhezri H, Mohebbi S (2006) Electrochem Commun 8:688CrossRefGoogle Scholar
  20. 20.
    Sun D, Zhu L, Huang H, Zhu G (2006) J Electroanal Chem 597:39CrossRefGoogle Scholar
  21. 21.
    Preda L, Kondo T, Spataru T, Matin M, Radu M, Osiceanu P, Fujishima A, Spataru N (2017) ChemElectroChem 4:1908CrossRefGoogle Scholar
  22. 22.
    Kim S, Cho M, Lee Y (2017) J Electrochem Soc 164:3029CrossRefGoogle Scholar
  23. 23.
    Salimi A, Alizadeh V, Compton R (2005) Anal Sci 21:1275CrossRefGoogle Scholar
  24. 24.
    Salimi A, Hallaj R, Kavosi B, Hagighi B (2010) Anal Chim Acta 661:28CrossRefGoogle Scholar
  25. 25.
    Roushani M, Sarabaegi M (2014) J Electroanal Chem 717:147CrossRefGoogle Scholar
  26. 26.
    Da Silva L, Alves V, de Castro S, Boodts J (2000) Colloids Surf A 170:119CrossRefGoogle Scholar
  27. 27.
    De Oliveira-Sousa A, da Silva M, Machado S (2000) Electrochim Acta 45:4467CrossRefGoogle Scholar
  28. 28.
    Wang M, Yao S, Madou M (2002) Sens Actuators B 81:313CrossRefGoogle Scholar
  29. 29.
    Wang J, Yokokawa M, Satake T, Suzuki H (2015) Sens Actuators B 220:859CrossRefGoogle Scholar
  30. 30.
    Thanawala S, Georgiev D, Baird R, Auner G (2007) Thin Solid Films 515:7059CrossRefGoogle Scholar
  31. 31.
    Trashima C, Rao T, Sarada B, Spataru N, Fujishima A (2003) J Electroanal Chem 544:65CrossRefGoogle Scholar
  32. 32.
    Rivera J, Pignot-Paintrand I, Pereira E, Rivas B, Moutet JC (2013) Electrochim Acta 110:465CrossRefGoogle Scholar
  33. 33.
    Wipf D, Ge F, Spaine T, Baur J (2000) Anal Chem 72:4921CrossRefGoogle Scholar
  34. 34.
    Huang F, Jin Y, Wen L, Mu D, Cui M (2013) J Electrochem Soc 160:184CrossRefGoogle Scholar
  35. 35.
    Kakooei S, Ismail M, Ari-Wahjoedi B (2013) Int J Mater Sci Innov 1:62Google Scholar
  36. 36.
    Li Y, Bu W, Wu L, Sun C (2005) Sens Actuators B 107:921CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Organic Chemistry and Inorganic ChemistryUniversity of Food TechnologiesPlovdivBulgaria

Personalised recommendations