Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 11, pp 1963–1969 | Cite as

Encapsulation of ferrocene in carbon nanotubes using low-temperature solution processing: influence of surface environment, diameter, and length

  • Suwannee Sriyab
  • Songwut Suramitr
  • Supa Hannongbua
  • Pongthep Prajongtat
Original Paper
  • 51 Downloads

Abstract

Encapsulation of guest molecules in carbon nanotubes (CNTs) to form encapsulation complexes is of increasing interest in many applications, for example, nanoelectronics, nanocatalysts, and energy storage, mainly due to the enhanced or modulated electronic and mechanical properties of the encapsulation complexes. However, the appropriate diameter and external structure of CNTs are crucial for the efficient encapsulation. Moreover, the low-cost encapsulation techniques for large-scale production are still required. In this work, ferrocene (Fe(C5H5)2) has been chosen as a guest molecule to be encapsulated in CNTs since it is a relatively stable compound and used for a wide range of chemical and biological systems. Encapsulation of ferrocene in CNTs was carried out using low-temperature solution processing based on a capillary filling technique. The influence of surface environment, diameter, and length of the nanotubes on the encapsulation yield has been investigated. We show that even using simple encapsulation processes, ferrocene can be encapsulated inside the nanotubes when the encapsulation was performed under the suitable encapsulation conditions.

Graphical abstract

Keywords

Chemical vapor deposition Nanostructures Template synthesis Encapsulation Solution-based processing 

Notes

Acknowledgements

PP is grateful to the Thailand Research Fund (MRG5980013) and the Development and Promotion of Science and Technology Talent Project (DPST, Thailand) for their support. We also acknowledge the Defence Technology Institute (DTI, Thailand), Laboratory for Computational and Applied Chemistry (LCAC) at Kasetsart University (KU), Kasetsart University Research and Development Institute (KURDI). A part of this work was conducted under the Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, and under the project of the NANOTEC Center of Excellence for Nanoscale Materials Design for Green Nanotechnology, Kasetsart University, promoted by the NSTDA, Ministry of Science and Technology, Thailand.

References

  1. 1.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    Yola ML, Atar N (2014) Electrochim Acta 119:24CrossRefGoogle Scholar
  3. 3.
    Yola ML, Eren T, Atar N (2014) Biosens Bioelectron 60:277CrossRefPubMedGoogle Scholar
  4. 4.
    Chen C, Zhang X, Zhou Z-Y, Yang X-D, Zhang X-S, Sun S-G (2016) Electrochim Acta 222:1922CrossRefGoogle Scholar
  5. 5.
    Zhang L-M, Sui X-L, Zhao L, Zhang J-J, Gu D-M, Wang Z-B (2016) Carbon 108:561CrossRefGoogle Scholar
  6. 6.
    Bhatia R, Kumar L (2017) J Saudi Chem Soc 21:366CrossRefGoogle Scholar
  7. 7.
    Huang J, Jiang Y, Wang J, Li C, Luo W (2017) Thermochim Acta 657:163CrossRefGoogle Scholar
  8. 8.
    Prajongtat P, Suramitr S, Gleeson MP, Mitsuke K, Hannongbua S (2013) Monatsh Chem 144:925CrossRefGoogle Scholar
  9. 9.
    Hou P, Liu C, Shi C, Cheng H (2012) Chin Sci Bull 57:187CrossRefGoogle Scholar
  10. 10.
    Wang L, Yi C, Zou H, Gan H, Xu J, Xu W (2011) J Mol Model 17:2751CrossRefPubMedGoogle Scholar
  11. 11.
    Guan L, Shi Z, Li M, Gu Z (2005) Carbon 43:2780CrossRefGoogle Scholar
  12. 12.
    Prajongtat P, Sriyab S, Zentgraf T, Hannongbua S (2018) Mol Phys 116:9CrossRefGoogle Scholar
  13. 13.
    Sagara T, Kurumi S, Suzuki K (2014) Appl Surf Sci 292:39CrossRefGoogle Scholar
  14. 14.
    Dillon FC, Bajpai A, Koós A, Downes S, Aslam Z, Grobert N (2012) Carbon 50:3674CrossRefGoogle Scholar
  15. 15.
    Xie Z, Cui X, Xu W, Wang Y (2017) Electrochim Acta 229:361CrossRefGoogle Scholar
  16. 16.
    Hsu WK, Li J, Terrones H, Terrones M, Grobert N, Zhu YQ, Trasobares S, Hare JP, Pickett CJ, Kroto HW, Walton DRM (1999) Chem Phys Lett 301:159CrossRefGoogle Scholar
  17. 17.
    Fang T-H, Chen K-H, Chang W-J (2008) Appl Surf Sci 254:1890CrossRefGoogle Scholar
  18. 18.
    Linganiso EC, Chimowa G, Franklyn PJ, Bhattacharyya S, Coville NJ (2012) Mater Chem Phys 132:300CrossRefGoogle Scholar
  19. 19.
    Kataura H, Maniwa Y, Kodama T, Kikuchi K, Hirahara K, Suenaga K, Iijima S, Suzuki S, Achiba Y, Krätschmer W (2001) Synth Met 121:1195CrossRefGoogle Scholar
  20. 20.
    Shiozawa H, Giusca CE, Silva SRP, Kataura H, Pichler T (2008) Phys Status Solidi B 245:1983CrossRefGoogle Scholar
  21. 21.
    Ajayan PM, Lijima S (1993) Nature 361:333CrossRefGoogle Scholar
  22. 22.
    Rurali R, Hernández ER (2010) Chem Phys Lett 497:62CrossRefGoogle Scholar
  23. 23.
    Zhang Z-S, Kang Y, Liang L-J, Liu Y-C, Wu T, Wang Q (2014) Biomaterials 35:1771CrossRefPubMedGoogle Scholar
  24. 24.
    Tyagi PK, Singh MK, Misra A, Palnitkar U, Misra DS, Titus E, Ali N, Cabral G, Gracio J, Roy M, Kulshreshtha SK (2004) Thin Solid Films 469:127CrossRefGoogle Scholar
  25. 25.
    Gao JM, Wang L, Yu HJ, Xiao AG, Ding WB (2011) Propell Explos Pyrot 36:404CrossRefGoogle Scholar
  26. 26.
    Zainul A, Wang L, Yu H, Saleem M, Akram M, Khalid H, Abbasi NM, Yang X (2017) J Colloid Interface Sci 487:38CrossRefGoogle Scholar
  27. 27.
    Zhao J-G, Xing B-Y, Yang H, Pan Q-L, Li Z-P, Liu Z-J (2016) New Carbon Mater 31:31CrossRefGoogle Scholar
  28. 28.
    Liu T, Liang R, Okoli O, Zhang M (2015) Mater Lett 159:353CrossRefGoogle Scholar
  29. 29.
    Roy S, Bajpai R, Soin N, Roy SS, McLaughlin JA, Misra DS (2014) Appl Surf Sci 321:70CrossRefGoogle Scholar
  30. 30.
    Shah KA, Tali BA (2016) Mater Sci Semicond Proc 41:67CrossRefGoogle Scholar
  31. 31.
    Kumar A, Singh F, Koinkar PM, Avasthi DK, Pivin JC, More MA (2009) Thin Solid Films 517:4322CrossRefGoogle Scholar
  32. 32.
    Antunes EF, Lobo AO, Corat EJ, Trava-Airoldi VJ, Martin AA, Veríssimo C (2006) Carbon 44:2202CrossRefGoogle Scholar
  33. 33.
    Tsai C-M, Song C-G, Hung Y-C, Jeong Y-G, Oh SH, Jeong JH, Kim H, Huh H, Yoon J-W, Sigmund W (2017) Ceram Int 43:3761CrossRefGoogle Scholar
  34. 34.
    Kavinkumar T, Manivannan S (2018) Vacuum 148:149CrossRefGoogle Scholar
  35. 35.
    Lüthi HP, Ammeter J, Almlöf J, Korsell K (1980) Chem Phys Lett 69:540CrossRefGoogle Scholar
  36. 36.
    Takashi Kyotani L-T, Tomita A (1996) Chem Mater 8:2109CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceKasetsart UniversityBangkokThailand
  2. 2.Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced StudiesKasetsart UniversityBangkokThailand
  3. 3.NANOTEC Center of Excellence for Nanoscale Materials Design for Green NanotechnologyKasetsart UniversityBangkokThailand
  4. 4.Department of Materials Science, Faculty of ScienceKasetsart UniversityBangkokThailand

Personalised recommendations