Advertisement

The interaction mechanism of nifedipine and pepsin

  • Lihua Ma
  • Baosheng Liu
  • Chundan Wang
  • Hongcai Zhang
  • Xu Cheng
Original Paper
  • 14 Downloads

Abstract

The interaction mechanism between nifedipine (NDP) and pepsin (PEP) at 298, 310, and 318 K was studied by various spectroscopic techniques and molecular docking. The experimental results showed that NDP mainly quenched the fluorescence of PEP by dynamic quenching of non-radiative energy transfer, but no significant changes in the secondary structure of PEP. The protein binding rate (W) of NDP measured at 310 K was 71.79–89.15%, and a binding rate model of NDP and PEP was established, W = − 0.1273R2 − 0.0519R + 0.8973. Hill’s coefficients were approximately 1, which showed that the interaction of NDP and PEP will not affect the binding of subsequent drug to the protein. The molecular docking technique was used to simulate the interaction between NDP and PEP, the results demonstrated that the binding site of NDP is located in the active center of pepsin, which was consistent with the conclusion of the spectroscopic method, and it was also proved that the interaction of PEP–NDP system was driven by hydrophobic and hydrogen bonding.

Graphical abstract

Keywords

Pepsin Nifedipine Spectroscopy Interaction Molecular docking 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of National Science Foundation of China (Grant no. 21375032).

References

  1. 1.
    Filgueira GCD, Filgueira OAS, Carvalho DM, Marques MP, Moisés ECD, Duarte G, Lanchote VL, Cavalli RC (2017) Br J Clin Pharmacol 83:1571CrossRefGoogle Scholar
  2. 2.
    Li GC, Liu BS, Zhang QJ (2016) Luminescence 31:1054CrossRefGoogle Scholar
  3. 3.
    Wang CD, Liu BS, Bian G, Ma LH (2017) Spectrosc Lett 50:476CrossRefGoogle Scholar
  4. 4.
    Zhang QJ, Liu BS, Li GX, Han R, Lv YK (2016) Spectrosc Spect Anal 36:2879Google Scholar
  5. 5.
    Wang X, Liu Y, He LL, Liu B, Zhang SY, Ye X, Jing JJ, Zhang JF, Gao M, Wang X (2015) Food Chem Toxicol 78:42CrossRefGoogle Scholar
  6. 6.
    Yang XL, Ye ZW, Yuan Y, Zheng ZQ, Shi JN, Ying Y, Huang P (2013) Luminescence 28:428Google Scholar
  7. 7.
    Sahu S, Bishi S, Behera PK (2011) J Mol Liq 158:39CrossRefGoogle Scholar
  8. 8.
    Wang SJ, Peng YL, Zhang CG, Ma QP, Peng XX, Ren LL (2017) Bull Korean Chem Soc 38:740Google Scholar
  9. 9.
    Yin MM, Dong P, Chen WQ, Xu SP, Yang LY, Jiang FL, Liu Y (2017) Langmuir 33:5111Google Scholar
  10. 10.
    Liu ST, Tao HL, Shou HJ (2011) Chin J Anal Lab 30:12Google Scholar
  11. 11.
    Cui MM, Liu BS, Li TT, Duan ST (2016) Spectrosc Lett 49:575Google Scholar
  12. 12.
    Hemmateenejad B, Shamsipur M, Samari F, Khayamian T, Ebrahimi M, Rezaei Z (2012) J Pharmaceut Biomed 67–68:204Google Scholar
  13. 13.
    Wang T, Xiang BR, Li Y, Chen CY, Zhou XH, Wang ZM, Dong Y, Wang Y, Fang HS (2009) J Mol Struct 921:192Google Scholar
  14. 14.
    Zeng HJ, Yang D, Hu GZ, Yang R, Qu LB (2016) J Mol Recognit 29:481CrossRefGoogle Scholar
  15. 15.
    Shen XC, Liang H, He XW, Wang XX (2004) Chin J Anal Chem 32:388Google Scholar
  16. 16.
    Chaves OA, Cesarin-Sobrinho D, Sant’Anna CMR, Carvalho MGD, Suzart LR, Catunda-Junior FEA, Netto-Ferreira JC, Ferreira ABB (2017) J Photochem PhotobiolA 336:37CrossRefGoogle Scholar
  17. 17.
    Liu BS, Cao SN, Li ZY, Chong BH (2013) Chin J Lumin 34:489Google Scholar
  18. 18.
    Wang P, Xie SS, Guo JJ, Bu HZ, Chen XJ (2013) Chin J Clin Pharmacol Ther 18:939Google Scholar
  19. 19.
    Liu BS, Wang J, Xue CL, Yang C, Lü YK (2011) Z Phys Chem 225:461CrossRefGoogle Scholar
  20. 20.
    Sun Y, Zhao YY, Li GB, Yang SY, Hu XY, Fan J (2011) J Chin Chem Soc (Taipei) 58:606Google Scholar
  21. 21.
    Sharifi T, Ghayeb Y, Mohammadi T (2017) Monatsh Chem 148:784CrossRefGoogle Scholar
  22. 22.
    Fang YF, Xu H, Shen LL, Huang FW, Yibulayin S, Huang SY, Tian SL, Hu ZL, He ZD, Li FR, Li YO, Zhou K (2015) Luminescence 30:861Google Scholar
  23. 23.
    Wang GK, Wang DC, Li X, Lu Y (2011) Colloids Surf B 84:274CrossRefGoogle Scholar
  24. 24.
    Zeng HJ, Li MT, Hu FF (2016) Chin J Lumin 37:484Google Scholar
  25. 25.
    Wang YR, Fang Q, Guo CH, Liu Y (2016) Spectrosc Spect Anal 36:3415Google Scholar
  26. 26.
    Sekowski S, Bitiucki M, Ionov M, Zdeb M, Abdulladjanova N, Rakhimov R, Mavlyanov S, Bryszewska M, Zamaraeva M (2018) J Lumin 194:171CrossRefGoogle Scholar
  27. 27.
    Makarska-Bialokoz M (2018) Spectrochim Acta A 193:24CrossRefGoogle Scholar
  28. 28.
    Agrahari AK, Doss CGP (2017) J Cell Biochem 118:3730CrossRefGoogle Scholar
  29. 29.
    Shahidha R, Muthu S, Raja M, Raj MR, Narayana B, Nayak PS, Sarojini BK (2017) Optik 140:1127CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Lihua Ma
    • 1
  • Baosheng Liu
    • 1
  • Chundan Wang
    • 1
  • Hongcai Zhang
    • 1
  • Xu Cheng
    • 1
  1. 1.College of Chemistry and Environmental ScienceHebei UniversityBaodingChina

Personalised recommendations