Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 11, pp 1945–1953 | Cite as

Voltammetric determination of ethylvanillin and methylvanillin sum at carbon paste electrode modified by sodium dodecyl sulfate in selected foodstuffs

  • Amir Shaaban Farag
  • Milan Sýs
  • Tomáš Hájek
  • Karel Vytřas
Original Paper

Abstract

A new voltammetric method without using high cost and health risk nanomaterials has been developed for quantitative determination of ethylvanillin and methylvanillin sum, compounds that are used as food additives. The method is based on direct electrochemical oxidation of these biologically active compounds using square wave voltammetry at carbon paste electrode with surface modified by sodium dodecyl sulfate (SDS/CPE) performed in 0.1 M phosphate pH 6.0 buffer. Working conditions such as pH value of supporting electrolyte, type of surfactant, accumulation time of surfactant, and parameters of square wave voltammetry were optimized. In comparison with bare carbon paste electrode, excellent reproducibility characterized by a relative standard deviation of approximately 0.3% was obtained at the SDS/CPE. Linear range from 1.0 × 10−6 to 2.0 × 10−5 M, limits of quantification 9.8 × 10−8 M and detection 2.9 × 10−8 M were found at pulse amplitude 70 mV and frequency 50 Hz selected as optimum for ethylvanillin quantification. For methylvanillin, a linear range from 7.0 × 10−8 to 2.0 × 10−5 M and limits of quantification 7.0 × 10−8 M and detection 2.0 × 10−8 M were also determined. The procedure was validated using standard high-performance liquid chromatography method in the analysis of selected complex foodstuffs such as commercial baking sugar, biscuits, and an alcoholic drink. The results showed that a direct voltammetric approach is economically advantageous and reliable for the determination of ethyl- and methylvanillin, which is fully comparable to the reverse phase HPLC used as the ISO standard.

Graphical abstract

Keywords

Carbon paste electrode Surfactant Square wave voltammetry Ethylvanillin Methylvanillin Food additives Food analysis 

Notes

Acknowledgements

The support received from the Faculty of Chemical Technology, University of Pardubice (project no. SGS-2018-001) is gratefully acknowledged.

References

  1. 1.
    Walton NJ, Mayer MJ, Narbad A (2003) Phytochemistry 63:505CrossRefPubMedGoogle Scholar
  2. 2.
    Teissedre PL, Waterhouse AL (2000) J Agric Food Chem 48:3801CrossRefPubMedGoogle Scholar
  3. 3.
    Farthing D, Sica D, Abernathy C, Fakhry I, Roberts JD, Abraham DJ (1999) J Chromatogr B 726:303CrossRefGoogle Scholar
  4. 4.
    Han XS (2002) Sichuan Chem indust Erod Control 5:36Google Scholar
  5. 5.
    Perez-Silva A, Odoux E, Brat P, Ribeyre F, Rodriguez-Jimenes G, Robles-Olvera V (2006) Food Chem 99:728CrossRefGoogle Scholar
  6. 6.
    Gerasimov AV, Gornova NV, Rudometova NV (2003) J Anal Chem 58:677CrossRefGoogle Scholar
  7. 7.
    Ohashi M, Omae H, Hashida M, Sowa Y, Imai S (2007) J Chromatogr A 1138:262CrossRefPubMedGoogle Scholar
  8. 8.
    Longares-Patron A, Canizares-Macias MP (2006) Talanta 69:882CrossRefPubMedGoogle Scholar
  9. 9.
    Timotheou-Potamia M, Calokerinos AC (2007) Talanta 71:208CrossRefPubMedGoogle Scholar
  10. 10.
    Bettazzi F, Palchetti I, Sisalli S, Mascini M (2006) Anal Chim Acta 555:134CrossRefGoogle Scholar
  11. 11.
    Kong DJ, Shen SF, Yu HY, Wang JD, Chen NS (2010) Chin J Inorg Chem 26:817Google Scholar
  12. 12.
    Luque M, Luque-Perez E, Rios A, Valcarcel M (2000) Anal Chim Acta 410:127CrossRefGoogle Scholar
  13. 13.
    Peng J, Hou C, Hu X (2012) Int J Electrochem Sci 7:1724Google Scholar
  14. 14.
    Shang L, Zhao F, Zeng B (2014) Food Chem 151:53CrossRefPubMedGoogle Scholar
  15. 15.
    Zheng D, Hu C, Gan T, Dang X, Hu S (2010) Sens Actuators B Chem 148:247CrossRefGoogle Scholar
  16. 16.
    Deng P, Xu Z, Zeng R, Ding C (2015) Food Chem 180:156CrossRefPubMedGoogle Scholar
  17. 17.
    Crevillen AG, Avila M, Pumera M, Gonzalez MC, Escarpa A (2007) Anal Chem 79:7408CrossRefPubMedGoogle Scholar
  18. 18.
    Sýs M, Khaled E, Metelka R, Vytřas K (2017) J Serb Chem Soc 82:865CrossRefGoogle Scholar
  19. 19.
    Švancara I, Vytřas K, Barek J, Zima J (2001) Crit Rev Anal Chem 31:311CrossRefGoogle Scholar
  20. 20.
    Zima J, Švancara I, Barek J, Vytřas K (2009) Crit Rev Anal Chem 39:204CrossRefGoogle Scholar
  21. 21.
    Rizk M, Attia AK, Elshahed MS, Farag AS (2015) J Electroanal Chem 743:112CrossRefGoogle Scholar
  22. 22.
    Digua K, Kauffmann JM, Delplancke JL (1994) Electroanal 6:451CrossRefGoogle Scholar
  23. 23.
    Lee JHQ, Lauw SJL, Webster RD (2016) Electrochim Acta 211:533CrossRefGoogle Scholar
  24. 24.
    Amarasekara MS, Wiredu B, Razzaq A (2012) Green Chem 14:2395CrossRefGoogle Scholar
  25. 25.
    Uddin W, Hu G, Hu L, Shen X, Fang Z, Zhang Y, Song J (2017) Int J Electrochem Sci 12:178CrossRefGoogle Scholar
  26. 26.
    Chethana BK, Basavanna S, Naik YA (2012) J Chem Pharm Res 4:538Google Scholar
  27. 27.
    Yardim Y, Gulcan M, Şentürk Z (2013) Food Chem 141:1821CrossRefPubMedGoogle Scholar
  28. 28.
    Jiang L, Ding Y, Jiang F, Li L, Mo F (2014) Anal Chim Acta 833:22CrossRefPubMedGoogle Scholar
  29. 29.
    Xinying MA (2014) Int J Electrochem Sci 9:3181Google Scholar
  30. 30.
    Li J, Feng H, Li J, Jiang J, Feng Y, He L, Qian D (2015) Electrochim Acta 176:827CrossRefGoogle Scholar
  31. 31.
    Liu Y, Liang Y, Lian H, Zhang C, Peng J (2015) Int J Electrochem Sci 10:4129Google Scholar
  32. 32.
    Silva TR, Brondani D, Zapp E, Vieira IC (2015) Electroanalysis 27:465CrossRefGoogle Scholar
  33. 33.
    Vilian ATE, Puthiaraj P, Kwak CH, Hwang S, Huh YS, Ahn W, Han Y (2016) Appl Mater Interfaces 8:12740CrossRefGoogle Scholar
  34. 34.
    Ali HS, Abdullah AA, Pınar PT, Yardım Y, Şentürk Z (2017) Talanta 170:384CrossRefPubMedGoogle Scholar
  35. 35.
    Filik H, Avan AA, Mümin Y (2017) Food Anal Methods 10:31CrossRefGoogle Scholar
  36. 36.
    Kalaiyarasi J, Meenakshi S, Pandian K, Gopinath SCB (2017) Microchim Acta 184:2131CrossRefGoogle Scholar
  37. 37.
    Khalilzadeh MA, Arab Z (2017) Curr Anal Chem 13:81CrossRefGoogle Scholar
  38. 38.
    Wu W, Yang L, Zhao F, Zeng B (2017) Sens Actuators B Chem 239:481CrossRefGoogle Scholar
  39. 39.
    Alpar N, Yardım Y, Şentürk Z (2018) Sens Actuators B Chem 257:398CrossRefGoogle Scholar
  40. 40.
    Durán GM, Llorent-Martínez EJ, Contento AM, Ríos A (2018) Microchim Acta 185:204CrossRefGoogle Scholar
  41. 41.
    Cheraghi S, Taher MA, Karimi-Maleh H (2018) J Food Compost Anal 62:254CrossRefGoogle Scholar
  42. 42.
    Sýs M, Žabčíková S, Červenka L, Vytřas K (2017) Potravinarstvo Slovak J Food Sci 11:96Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Amir Shaaban Farag
    • 1
  • Milan Sýs
    • 1
  • Tomáš Hájek
    • 1
  • Karel Vytřas
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations