Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 10, pp 1739–1747 | Cite as

The inclusion complexation of daidzein with β-cyclodextrin and 2,6-dimethyl-β-cyclodextrin: a theoretical and experimental study

  • Thanyada Rungrotmongkol
  • Tipsuda Chakcharoensap
  • Piamsook Pongsawasdi
  • Nawee Kungwan
  • Peter Wolschann
Original Paper

Abstract

Daidzein is an isoflavone of the group of phytoestrogens extracted from soybeans and other legumes. As its structure is relatively similar to that of the hormone estrogen, daidzein is able to bind with estrogen receptors leading to a reduced postmenopausal women symptom. A common problem of the compounds of this group is the rather low water solubility with the consequence of limited pharmaceutical applications. Inclusion complexation between daidzein and two β-CDs (β-CD and DM-β-CD) was investigated by theoretical and experimental techniques. Based on multiple MD simulations in combination with different binding-free energy calculations, the most preferential mode of daidzein binding to cyclodextrins is the insertion of the chromone ring fitting well into the hydrophobic cavity. All four methods of binding-free energy calculations (MM/PBSA, MM/GBSA, QM/PBSA, and QM/GBSA) predict the binding affinity of the daidzein/DM-β-CD complex significantly higher than the daidzein/β-CD. Following the same trend, the experimental results also indicated the enhancement of solubility and stability of the daidzein/DM-β-CD complex. Moreover, it was found that the complexation process was favorably enthalpy driven.

Graphical abstract

Keywords

Daidzein Cyclodextrin Inclusion complex Molecular dynamics simulation Phase solubility study 

Notes

Acknowledgements

This study was financially supported by the National Research University Project, Office of Higher Education Commission (WCU-023-FW-57). We also thank the Structural and Computational Biology Research Group, Special Task Force for Activating Research (STAR). N.K. would like to thank Center of Excellence in Materials Science and Technology, Chiang Mai University for the financial support. By travel grants for short research visit, research reported in this publication was also supported by the ASEAN-European Academic University Network (ASEA-UNINET). The Computational Chemistry Center of Excellent, and the Vienna Scientific Cluster (VSC-2) were acknowledged for facilities and computing resources.

References

  1. 1.
    Yu O, Jung WS, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Plant Physiol 124:781CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Borras C, Gambini J, Gomez-Cabrera MC, Sastre J, Pallardo FV, Mann GE, Vina J (2006) FASEB J 20:2136CrossRefPubMedGoogle Scholar
  3. 3.
    Jackman KA, Woodman OL, Chrissobolis S, Sobey CG (2007) Brain Res 1141:99CrossRefPubMedGoogle Scholar
  4. 4.
    Park JS, Woo MS, Kim DH, Hyun JW, Kim WK, Lee JC, Kim HS (2007) J Pharmacol Exp Ther 320:1237CrossRefPubMedGoogle Scholar
  5. 5.
    Chinta SJ, Ganesan A, Reis-Rodrigues P, Lithgow GJ, Andersen JK (2013) Neurotox Res 23:145CrossRefPubMedGoogle Scholar
  6. 6.
    Zhou Y, Lee AS (1998) J Natl Cancer Inst 90:381CrossRefPubMedGoogle Scholar
  7. 7.
    Park DK, Choi WS, Park HJ (2012) J Agric Food Chem 60:2309CrossRefPubMedGoogle Scholar
  8. 8.
    Li HQ, Xue JY, Shi L, Gui SY, Zhu HL (2008) Eur J Med Chem 43:662CrossRefPubMedGoogle Scholar
  9. 9.
    Hall WL, Vafeiadou K, Hallund J, Bugel S, Reimann M, Koebnick C, Zunft HJ, Ferrari M, Branca F, Dadd T, Talbot D, Powell J, Minihane AM, Cassidy A, Nilsson M, Dahlman-Wright K, Gustafsson JA, Williams CM (2006) Am J Clin Nutr 83:592CrossRefPubMedGoogle Scholar
  10. 10.
    Zhuo XG, Melby MK, Watanabe S (2004) J Nutr 134:2395CrossRefPubMedGoogle Scholar
  11. 11.
    Lichtenstein AH (1998) J Nutr 128:1589CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang M, Yang HJ, Holman CDJ (2009) Breast Cancer Res Treat 118:553CrossRefPubMedGoogle Scholar
  13. 13.
    Miltyk W, Craciunescu CN, Fischer L, Jeffcoat RA, Koch MA, Lopaczynski W, Mahoney C, Jeffcoat RA, Crowell J, Paglieri J, Zeisei SH (2003) Am J Clin Nutr 77:875CrossRefPubMedGoogle Scholar
  14. 14.
    Frankenfeld CL, McTiernan A, Thomas WK, LaCroix K, McVarish L, Holt VL, Schwartz SM, Lampe JW (2006) Maturitas 53:315CrossRefPubMedGoogle Scholar
  15. 15.
    Kelly RM, Dijkhuizen L, Leemhuis H (2009) Appl Microbiol Biotechnol 84:119CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Loftsson T, Brewster ME (2010) J Pharm Pharmacol 62:1607CrossRefPubMedGoogle Scholar
  17. 17.
    Loftsson T, Brewster ME (1996) J Pharm Sci 85:1017CrossRefPubMedGoogle Scholar
  18. 18.
    Li J, Loh XJ (2008) Adv Drug Deliv Rev 60:1000CrossRefPubMedGoogle Scholar
  19. 19.
    Yu Z, Cui M, Yan C, Song F, Liu Z, Liu S (2007) Rapid Commun Mass Spectrom 21:683CrossRefPubMedGoogle Scholar
  20. 20.
    Bouquet W, Ceelen W, Adriaens E, Almeida A, Quinten T, De Vos F, Pattyn P, Peeters M, Remon JP, Vervaet C (2010) Ann Surg Oncol 17:2510CrossRefPubMedGoogle Scholar
  21. 21.
    Merkus FW, Verhoef JC, Marttin E, Romeijn SG, van der Kuy PH, Hermens WA, Schipper NG (1999) Adv Drug Deliv Rev 36:41CrossRefPubMedGoogle Scholar
  22. 22.
    Daruhazi AE, Szente L, Balogh B, Matyus P, Beni S, Takacs M, Gergely A, Horvath P, Szoke E, Lemberkovics E (2008) J Pharm Biomed Anal 48:636CrossRefPubMedGoogle Scholar
  23. 23.
    Borghetti GS, Pinto AP, Lula IS, Sinisterra RD, Teixeira HF, Bassani VL (2011) Drug Dev Ind Pharm 37:886CrossRefPubMedGoogle Scholar
  24. 24.
    Yatsu FKJ, Koester LS, Lula I, Passos JJ, Sinisterra R, Bassani VL (2013) Carbohydr Polym 98:726CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang H, Tan T, Hetényi C, van der Spoel D (2013) J Chem Theo Comput 9:4542CrossRefGoogle Scholar
  26. 26.
    Pahari B, Sengupta B, Chakraborty S, Thomas B, McGowan D, Sengupta PK (2013) J Photochem Photobiol B 118:33CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang H, Tan T, Hetényi C, Lv Y, van der Spoel D (2014) J Phys Chem C 118:7163CrossRefGoogle Scholar
  28. 28.
    Szejtli J (1998) Chem Rev 98:1743CrossRefPubMedGoogle Scholar
  29. 29.
    Del Valle E (2004) Process Biochem 39:1033CrossRefGoogle Scholar
  30. 30.
    Nutho B, Khuntawee W, Rungnim C, Pongsawasdi P, Wolschann P, Karpfen A, Kungwan N, Rungrotmongkol T (2014) Beilstein J Org Chem 10:2789CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sangpheak W, Khuntawee W, Wolschann P, Pongsawasdi P, Rungrotmongkol T (2014) J Mol Graph Model 50:10CrossRefPubMedGoogle Scholar
  32. 32.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov A, Bloino J, Zheng G, Sonnenberg J, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, Peralta J, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant C, Iyengar S, Tomasi J, Cossi M, Rega N, Millam J, Klene M, Knox J, Cross J, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Martin R, Morokuma K, Zakrzewski V, Voth G, Salvador P, Dannenberg J, Dapprich S, Daniels A, Farkas O, Foresman J, Ortiz J, Cioslowski J, Fox D (2009) Gaussian 09. Gaussian, Inc, Pittsburgh (Dalton 2.0 Program Package)Google Scholar
  33. 33.
    Higuchi TCK (1965) Adv Anal Chem Instrum 4:117Google Scholar
  34. 34.
    Ranatunga RPJ, Carr PW (2000) Anal Chem 72:5679CrossRefPubMedGoogle Scholar
  35. 35.
    Charlton SA, Coym JW (2012) J Chromatogr 1266:69CrossRefGoogle Scholar
  36. 36.
    Viernstein H, Weiss-Greiler P, Wolschann P (2002) J Incl Phenom Macrocycl Chem 44:235CrossRefGoogle Scholar
  37. 37.
    Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) J Chem Theo Comput 6:2872CrossRefGoogle Scholar
  38. 38.
    Snor W, Liedl E, Weiss-Greiler P, Karpfen A, Viernstein H, Wolschann P (2007) Chem Phys Lett 441:159CrossRefGoogle Scholar
  39. 39.
    Walker RC, Crowley MF, Case DA (2008) J Comput Chem 29:1019CrossRefPubMedGoogle Scholar
  40. 40.
    Khuntawee W, Rungrotmongkol T, Hannongbua S (2012) J Chem Info Model 52:76CrossRefGoogle Scholar
  41. 41.
    Meeprasert A, Khuntawee W, Kamlungsua K, Nunthaboot N, Rungrotmongkol T, Hannongbua S (2012) J Mol Graph Model 38:148CrossRefPubMedGoogle Scholar
  42. 42.
    Kaiyawet N, Rungrotmongkol T, Hannongbua S (2013) J Chem Info Model 53:1315CrossRefGoogle Scholar
  43. 43.
    Luty BA, van Gunsteren WF (1996) J Phys Chem 100:2581CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Thanyada Rungrotmongkol
    • 1
    • 2
    • 3
  • Tipsuda Chakcharoensap
    • 1
  • Piamsook Pongsawasdi
    • 1
  • Nawee Kungwan
    • 4
    • 5
  • Peter Wolschann
    • 1
    • 6
    • 7
  1. 1.Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Ph.D. Program in Bioinformatics and Computational Biology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  3. 3.Molecular Sensory Science Center, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  4. 4.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  5. 5.Center of Excellence in Materials Science and TechnologyChiang Mai UniversityChiang MaiThailand
  6. 6.Department of Pharmaceutical Technology and BiopharmaceuticsUniversity of ViennaViennaAustria
  7. 7.Institute of Theoretical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations